• Title/Summary/Keyword: Android Smartphone

Search Result 354, Processing Time 0.028 seconds

A Control System for Synchronizing Attitude between an Android Smartphone and a Mobile Robot (안드로이드 스마트폰과 이동 로봇의 자세 동기화를 위한 제어 시스템)

  • Kim, Min J.;Bae, Seol B.;Shin, Dong H.;Joo, Moon G.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.5
    • /
    • pp.277-283
    • /
    • 2014
  • In this paper, we propose a control system for synchronizing attitude between an Android smartphone and a mobile robot. The control system is comprised of a smartphone and a mobile robot. The smartphone transports its attitude to the mobile robot and receives the attitude of mobile robot through bluetooth communication. Further, the smartphone displays the mobile robot on the screen by using embedded camera, which can be used as a pseudo augmented reality. Comparing the received attitude data from smartphone, the mobile robot measures its attitude by an AHRS(attitude heading reference system) and controls its attitude. Experiments show that the synchronization performance of the proposed system is maintained in the error range of $1^{\circ}$.

Development of a Personal Riding Robot Controlled by a Smartphone Based on Android OS (안드로이드 스마트폰 제어기반의 개인용 탑승로봇 구현)

  • Kim, Yeongyun;Kim, Dong Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.592-598
    • /
    • 2013
  • In this paper, a small, lightweight smartphone-controlled riding robot is developed. Also, in this study, a smartphone with a jog shuttle mode for consideration of user convenience is proposed to make a small, lightweight riding robot. As well, a compass sensor is used to compensate for the mechanical characteristics of motors mounted on the riding robot. The riding robot is controlled by the interface of a drag-based jog shuttle in the smartphone, instead of a mechanical controller. For a personal riding robot, if the smartphone is used as a controller instead of a handle or a pole, it reduces its size, weight, and cost to a great extent. Thus, the riding robot can be used in indoor spaces such as offices for moving or a train or bus station and an airport for scouting, or hospital for disabilities. Experimental results show that the riding robot is easily and conveniently controlled by the proposed smartphone interface based on Android.

Android Application Analysis Method for Malicious Activity Detection (안드로이드 앱 악성행위 탐지를 위한 분석 기법 연구)

  • Sim, Won-Tae;Kim, Jong-Myoung;Ryou, Jae-Cheol;Noh, Bong-Nam
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.1
    • /
    • pp.213-219
    • /
    • 2011
  • Due to the rapid growth of smartphone market, the security threats are also increased. One of the smartphone security threats is that w1Verified applications are distributed on the smartphone market. In the case of Andoroid market, Google have no Application Approval Process that can detect malicious android application so many malicious android applications are distributed in the Android market. To reduce this security threat, it is essential the skill to detect the malicious activities of application. In this paper, we propose the android application analysis method for malicious activity detection and we introduce the implementation of our method which can automatically analyze the android application.

Analysis on the Power Efficiency of Smartphone According to Parameters (스마트폰의 구성 변수에 따른 전력 효율성 분석)

  • Son, Dong-Oh;Kim, Jong-Myon;Kim, Cheol-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.5
    • /
    • pp.1-8
    • /
    • 2013
  • Smartphone enables diverse applications to be used in mobile environments. In spite of the high performance of smartphones, battery life has become one of the major constraints in mobility. Therefore, power efficiency of the smartphone is one of the most important factors in determining the efficiency of the smartphone. In this paper, in order to analyze the power efficiency of the smartphone, we have various experiments according to several configuration parameters such as processor, display and OS. We also use diverse applications. As a result, power consumption is dependent on the processor complexity and display size. However, power consumption shows the unpredictable pattern according to the OS. Smartphone using android OS consumes high power when internet and image processing applications are executed, but It consumes low power when music and camera applications are executed. In contrary, smartphone based on iOS consumes high power when game and internet applications are executed but it consumes low power when camera and processing applications are executed. In general, smartphone using iOS is more power efficient than smartphone based on android OS, because smartphone using iOS is optimized in the perspective of the hardware and OS.

Real-time Heart Rate Measurement based on Photoplethysmography using Android Smartphone Camera

  • Hoan, Nguyen Viet;Park, Jin-Hyeok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.234-243
    • /
    • 2017
  • With the development of smartphone technologies enable photoplethysmogram (PPG) acquisition by camera and heart rate (HR) measurement. This papers presents improved algorithm to extract HR from PPG signal recorded by smartphone camera and to develop real-time PPG signal processing Android application. 400 video samples recorded by Samsung smartphone camera are imported as input data for further processing and evaluating algorithm on MATLAB. An optimized algorithm is developed and tested on Android platform with different kind of Samsung smartphones. To assess algorithm's performance, medical device Beurer BC08 is used as reference. According to related works, accuracy parameters includes 90% number of samples that has relative errors less than 5%, Person correlation (r) more than 0.9, and standard estimated error (SEE) less than 5 beats-per-minutes (bpm).

An Empirical Analysis of Smartphone Diffusions in a Global Context

  • Cho, Daegon
    • Journal of Contemporary Eastern Asia
    • /
    • v.14 no.1
    • /
    • pp.45-55
    • /
    • 2015
  • This paper examines the diffusion of smartphones with a special emphasis on the diffusive interactions between Apple iOS and Google Android in a global context. Since the two mobile platforms were first introduced in the market, the use of smartphones has skyrocketed, suggesting that the dramatic diffusion of smartphones may be explained in part by the growth and competition of these two platforms. To study this, an extended Bass model is applied to a data set of quarterly smartphone sales between 2008 and 2013 for 15 countries. Our findings suggest that the innovation effect was more salient for iOS than for Android in developed countries, whereas the imitation effect was more striking for Android than for iOS in developing countries. Furthermore, our results from the co-diffusion model suggest that the diffusion of Android negatively affected by the diffusion of iOS, but not vice versa.

Suppression of Noisy Characteristics of Biosignals by Implementing Digital Filters with an Android Smartphone Platform (스마트폰 연동 생체신호 왜곡보정을 위한 디지털 필터 설계 및 구현)

  • Kim, Jeong-Hwan;Kim, Kyeong-Seop;Shin, Seung-Won;Kim, Hyun-Tae;Lee, Jeong-Whan;Kim, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1518-1523
    • /
    • 2012
  • In this study, the novel digital filtering algorithms are implemented to suppress the noisy characteristics embedded in ambulatory electrocardiogram signals by an android smartphone platform. With this aim, Graphical User Interface (GUI) is designed and implemented by utilizing multithread-Java programming to realize Finite Impulse Response and Infinite Impulse Response filter. With simulating our implemented digital filters built in an android smartphone, we can find the fact that we can efficiently suppresses the noisy characteristics due to baseline wandering and 60 Hz powerline source fluctuations especially in electrocardiograms.

An implementation of Torrent-based P2P system on Android (Torrent를 이용한 안드로이드 P2P 개발)

  • Jang, Hak-Beom;Kang, Seong-Yong;Choi, Hyoung-Kee
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.85-88
    • /
    • 2011
  • 요즘은 "손 안의 컴퓨터"라 불리는 smartphone이 전 세계적으로 열풍이다. 휴대전화가 보급되어 일반사람들도 이동하면서 전화가 가능하게 된 지 얼마 되지도 않았다. Blackberry, apple, HTC, nokia, samsung, LG 등 수많은 제조업체들이 이미 smartphone 시장에 뛰어든 지 오래이며, 이들 간의 경쟁은 갈수록 치열해지고 있다. 이 논문은 이러한 우리들의 생각을 반영하여 만들게 된 프로그램에 대한 것이고 따라서, "smartphone OS 중 가장 개발자를 위한다"는 평을 받고 있는 Android 기반의 P2P 프로그램에 대한 것이다. P2P는 많은 사람들이 파일공유를 목적으로 사용하는 프로그램으로, 이미 컴퓨터에서는 많이 사용되고 있다. 이는 트래커 서버 운영을 기반으로 한다. Android smartphone에서도 이러한 수요는 앞으로 급증할 것으로 보여서, 이 프로그램의 개발은 유저의 요구를 반영할 수 있는 의미있는 작업이라 하겠다.

Android Network Packet Monitoring & Analysis Using Wireshark and Debookee

  • Song, Mi-Hwa
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.8 no.4
    • /
    • pp.26-38
    • /
    • 2016
  • Recently, mobile traffic has increased tremendously due to the deployment of smart devices such as smartphones and smart tablets. Android is the world's most powerful mobile platform in smartphone. The Android operating system provide seamless access to many applications and access to the Internet. It would involve network packet sharing communicated over the network. Network packet contains a lot of useful information about network activity that can be used as a description of the general network behaviours. To study what is the behaviours of the network packet, an effective tools such as network packet analyzers software used by network administrators to capture and analyze the network information. In this research, more understanding about network information in live network packet captured from Android smartphone is the target and identify the best network analyzer software.

Software Library Design for GNSS/INS Integrated Navigation Based on Multi-Sensor Information of Android Smartphone

  • Kim, Youngki;Fang, Tae Hyun;Seo, Kiyeol
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.279-286
    • /
    • 2022
  • In this paper, we designed a software library that produces integrated Global Navigation Satellite System (GNSS) / Inertial Navigation System (INS) navigation information using the raw measurements provided by the GNSS chipset, gyroscope, accelerometer and magnetometer embedded in android smartphone. Loosely coupled integration method was used to derive information of GNSS /INS integrated navigation. An application built in the designed library was developed and installed on the android smartphone. And we conducted field experiments. GNSS navigation messages were collected in the Radio Technical Commission for Maritime Service (RTCM 3.0) format by the Network Transport of RTCM via Internet Protocol (NTRIP). As a result of experiments, it was confirmed that design requirements were satisfied by deriving navigation such as three-dimensional position and speed, course over ground (COG), speed over ground (SOG), heading and protection level (PL) using the designed library. In addition, the results of this experiment are expected to be applicable to maritime navigation applications using smart device.