• Title/Summary/Keyword: Anchored wall

Search Result 69, Processing Time 0.029 seconds

The Analysis of Excavation Behavior Considering Small Strain Stiffness (미소변형율 강성을 고려한 지반굴착 해석)

  • Kim, Young-Min
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.2
    • /
    • pp.21-31
    • /
    • 2010
  • This paper describes research on the prediction of the vertical displacement of surface, horizontal displacements and bending moments in two anchored retaining wall for an excavation by a finite element program. It is very important to consider the appropriate constitutive model for the numerical analysis in excavation behavior. It is shown in this paper that the analyses of excavation considering small strain stiffness gives the more reasonable prediction of the vertical displacement of surface. and the parametric study on the small strain stiffness parameters for excavation analysis has been analysed.

  • PDF

A Study on the Flexibility of Anchored Sheet Piles (앵커로 지지(支持)된 널말뚝의 유연성(柔軟性)에 관한 연구(研究))

  • Chun, Byung Sik;Kang, In Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.197-204
    • /
    • 1988
  • This thesis studied the flexibility of anchored sheet piles and the behavior of it according to the levels of excavation. The results showed that the bending moment of sheet piles was reduced due to the displacement of walls and the load of anchor and also that Rowe's moment reduction curve was rational. It concluded that the displacement of anchored sheet piles and the soil settlement behind the walls can be reduce by suitable choice of anchor load and wall flexibility.

  • PDF

Characteristics of Collapsed Retaining Walls Using Elasto-plastic Method and Finite Element Method (탄소성 방법과 유한요소법에 의한 붕괴 토류벽의 거동차이 분석)

  • Jeong, Sang-Seom;Kim, Young-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.19-29
    • /
    • 2009
  • In this study, a numerical analysis was performed to predict the sequential behavior of anchored retaining wall where the failure accident took place, and verified accuracy of prediction through the comparisons between prediction and field measurement. The emphasis was given to the wall behaviors and the variation of sliding surface based on the two different methods of elasto-plastic and finite element (shear strength reduction technique). Through the comparison study, it is shown that the bending moment and the soil pressure at construction stages produce quite similar results in both the elasto-plastic and finite element method. However, predicted wall deflections using elasto-plastic method show underestimate results compared with measured deflections. This demonstrates that the elasto-plastic method does not clearly consider the influence of soil-wall-reinforcement interaction, so that the tension force (anchor force and earth pressure) on the wall is overestimated. Based on the results obtained, it is found that finite element method using shear strength reduction method can be effectively used to perform the back calculation analysis in the anchored retaining wall, whereas elasto-plastic method can be applicable to the preliminary design of retaining wall with suitable safety factor.

Seismic Design of Anchored Sheet Pile Walls in c-0 Soils (점성토 지반에 설치되는 앵커로 지지된 널말뚝의 내진설계)

  • 김홍택
    • Geotechnical Engineering
    • /
    • v.8 no.1
    • /
    • pp.41-58
    • /
    • 1992
  • In the present study, an analytical solution method is proposed for the seismic design of anchored sheet pile walls used in port. The proposed analytical method deals with the anchored sheet pile walls with free earth support in sands and c- U soils, including the effects of hydrodynamic pressures and a condition of steady seepage between the two water levels. Also, the effects of various parameters(differential in water levels, anchor position, wall friction angle, dredge line slope, cohesion, adhesion etc.) on embedment depth, anchor force, and maximum bending moment are analyzed using the proposed method. In addition, comparisons between different definitions of safety factor are made, and necessary considerations required in the design of anchored sheet pile walls are examined.

  • PDF

A Study for Safety Management on the Basis of Lateral Displacement Rates of Anchored In-situ Walls by Collapse Case Histories (붕괴 사례를 통한 앵커지지 가설흙막이벽체의 수평변위속도에 의한 안전관리 연구)

  • Chung, Dae-Seouk;Lee, Yong-Beom
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.367-378
    • /
    • 2018
  • Purpose: The objective of this study is to present a reasonable safety management of the anchored in-situ wall systems constructed in the ground conditions consisting of multi-layered soils underlain by bedrocks in the urban area of Korea. Method: Field measurements collected from collapse case histories with deep excavations were analyzed for the safety management of the wall systems supported by the earth anchors in terms of lateral displacement rates. Results: The average maximum lateral displacement rate in a collapsed zone of the in-situ wall significantly increased upon the completion of the excavation. Particularly, the collapse of the in-situ wall system due to the sliding occurring along the discontinuities of the rock produced a considerably large lateral displacement rate over a relatively short period. Conclusion: For predicting and preventing the collapse of the wall system during or after the excavation work, the utilization of the safety management criteria of the in-situ wall system by the lateral displacement rate was found to be much more reasonable in judging the safety of earthworks than the application of the quantitative management criteria which have been commonly used in the excavation sites.

Design Charts and Simplified Formulae for Anchored Sheet Pile Wall- Using Equivalent Beam Analysis for Fixed End Supported Wall - (앵커식 널말뚝벽의 설계용 도표와 간편식- 고정지지 널말뚝의 등가보 해석을 사용하여 -)

  • 김기웅;원진오;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.19-30
    • /
    • 2000
  • The major design parameters of the anchored sheet-pile wall include the determination of required penetration depth, the force acting on the anchor, and the maximum bending moment in the piling. Blum solved the fixed earth supported wall using the equivalent beam method, assuming that the wall can be separated into upper and lower parts of the point of contraflexure. Design charts help designer by simplifying the design procedure. But they have some difficulties under some Geotechnical and geometrical conditions. For example, the conventional design charts can compute design parameters only when the ground water table exists above the dredge line. In this paper, the design charts which can be used for the ground water table existing under the dredge line are presented. And simplified formulae are developed by regression analysis. It is found that simplified formulae are not only very useful for the practice of design but also they can evaluate the result of numerical methods or design charts.

  • PDF

Measured Performance of Full Scale Tieback Walls in

  • Kim, Nak
    • Geotechnical Engineering
    • /
    • v.14 no.3
    • /
    • pp.5-24
    • /
    • 1998
  • Two instrumented full scale tieback walls in sand were constructed at to Geotechnical Experimentation Site located on the Texas A 51M University Riversic Measurements were obtained from the one row anchor wall and from the two row at different times during construction. The measured performance of the tieback walls is presented and investigated. The these walls at different construction stage is evaluated with respect to lateral wall. settlement of the ground, bending moment of the wall. axial load distribution and anchor load variation. The fundamental mechanism of a tieback wall in sand is and explained with the measurements.

  • PDF

The Use of Reliability-based Approach to Design Anchored Sheet Pile Walls (신뢰성에 근거한 앵커 널말뚝의 설계방안 연구)

  • Kim, Hyung-Bae;Lee, Seoung-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.3
    • /
    • pp.95-104
    • /
    • 2002
  • In this study, a reliability-based design (RBD) procedure for determining design values fur anchored sheet pile wall is proposed considering overturning about the anchor point as the major failure mode. In this design procedure, the depth of embedment of the sheet pile wall is logically chosen in accordance with degrees of uncertainties of design input parameters using approximate probabilistic computation methods. These methods have been successfully used in the geotechnical engineering requiring neither understandings of complex probabilistic theories nor efforts to prepare more data. It was investigated that the design results by the proposed method were compatible with those by commonly used deterministic design methods. Additionally, in an effort to investigate the effects of changes in the degree of uncertainties of major design variables on the design results of the sheet pile wall, a sensitivity analysis was peformed.

Case Study of Self-Supported Diaphragm Wall Method Using Counterfort Technique (부벽식 기법을 사용한 자립식 지하연속벽 공법의 사례 연구)

  • Jeong, Gyeong-Hwan;Park, Hun-Kook;Shin, Min-Sik;Han, Kyoung-Tae;Ryu, Ji-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.276-285
    • /
    • 2006
  • Application of anchored or strutted wall system for the earth retention of excavation works in a populated urban area or a poor soil deposit can be limited due to various restrictions. Since the strut becomes longer in a wide excavation site, the stability of an earth retaining wall is decreased, the wall deformation is increased, and the ground settlement is also increased due to an increased buckling or bending deformation of struts. Especially, in a populated urban area, the installation of anchors can be problematic due to the property line of adjacent structures or facilities. Thus, a new concept of earth retaining system like Self-Supported diaphragm Wall can solve several problems expected to occur during excavation in the urban area. In this study, Numerical analyses of counterfort diaphragm wall was introduced and the monitored data from the site was compared with the original results of numerical analyses. Also, in the case of the deep excavation applied the counterfort diaphragm wall, numerical analyses was performed to predict the wall deformation and the reinforcement to reduce the wall deformation was suggested.

  • PDF

A Study on the Rational Application of 3D Numerical Analysis for Anchored Earth Retaining Wall (앵커지지 흙막이 벽체의 합리적인 3차원 수치해석기법 적용에 관한 연구)

  • Jeong, Sang-Seom;Sim, Jae-Uk;Lee, Sung-June
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.4
    • /
    • pp.29-39
    • /
    • 2016
  • This paper presents the results of 2D and 3D finite element simulations conducted to analyze the effects of excavation depth (H), excavation width (L), and ground condition on the behavior of anchored earth retaining wall in inclined ground layers. The results of numerical analyses are compared with those of the site instrumentation analyses. Based on the results obtained, it appeared that 2D numerical analysis tends to overestimate the horizontal displacement of retaining wall compared to the 3D numerical analysis. When the excavation depth is deeper than 20m, it is found that 2D and 3D numerical analysis results of excavation work in soil ground condition are more different from the results in rock ground condition. For an accurate 3D numerical analysis, applying 3D mesh which has an excavation width twice longer than excavation depth is recommended. Consequently, 3D numerical analysis may be able to offer significantly better predictions of movement than 2D analysis.