• Title/Summary/Keyword: Anchorage system

Search Result 221, Processing Time 0.023 seconds

Cyclic Loading Test of Anchorage System for Externally Prestressed CFRP Plate (외부긴장 CFRP판용 정착부의 반복하중 실험)

  • Jung, Woo-Tai;Park, Jong-Sup;Park, Young-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.262-265
    • /
    • 2006
  • This paper presents results on static and cyclic loading tests of anchorage system for externally prestressed CFRP plate. A total of 6 specimens have been tested. The specimens can be classified into the concrete surface specimens and the concrete near surface mounted specimens. Static test results before and after cyclic loading test reveal that anchorage system for externally prestressed CFRP plate has static capacity more than CFRP tensile strength.

  • PDF

Experimental Study of External Prestressing Strengthening Using Jacket-Base Anchorage System. (자켓-받침형 정착장치를 이용한 외부강선 보강 효과의 실험적 연구)

  • 김형규;양동석;박선규;곽수현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.457-462
    • /
    • 2002
  • Generally speaking, durability, load carrying capacity and the life of structure becomes to be shortened in all structures as time passed. Also, we have to repair and reinforce because of tile decrease of the traffic volume and overloaded vehicles in the bridge. External prestressing method is most popular and effective strengthening method which can be used for the prestressed concrete-girders. When strengthening with external prestressing method, there are many ways to install anchorage system. But, These methods have many faults. For example, the achorage force is so small or an anchorage system installation damages an existing structure. So, this paper suggested a new anchorage system to strengthen without any damage to the structure and then confirm the increase of durability and the properties of behavior with experimentation.

  • PDF

Strengthening of steel-concrete composite beams with prestressed CFRP plates using an innovative anchorage system

  • Wan, Shi-cheng;Huang, Qiao;Guan, Jian
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.21-35
    • /
    • 2019
  • This study investigates the flexural behavior of steel-concrete composite beams strengthened with prestressed carbon fiber-reinforced polymer (CFRP) plates. An innovative mechanical anchorage system was developed. The components of the system can be easily assembled on site before applying a prestressing force, and removed from the structures after strengthening is completed. A total of seven steel-concrete composite specimens including four simply supported beams strengthened at the positive moment region and three continuous beams strengthened at the negative moment region were tested statically until failure. Experimental results showed that the use of prestressed CFRP plates enhanced the flexural capacity and reduced the mid-span deflection of the beams. Furthermore, by prestressing the CFRP laminates, the material was used more efficiently, and the crack resistance of the continuous composite specimens at the central support was significantly improved after strengthening. Overall, the anchorage system proved to be practical and feasible for the strengthening of steel-concrete composite beams. The theoretical analysis of ultimate bearing capacity is reported, and good agreement between analytical values and experimental results is achieved.

BEHAVIOR AND DUCTILITY OF STRENGTHENED WITH EXTERNAL USING LIFTING HOLE ANCHORAGE SYSTEM

  • Kyeong-Seok Baek;ChangDu Son;Kyoung-Bong Han;Jun-Myung Park;Sun-Kyu Park
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1618-1624
    • /
    • 2009
  • Since various methods for repairing and rehabilitating have been applied to damaged bridges to increase their load carrying capacity, many researches on the methods have been widely carried out. In particular, In terms of applicability, strengthening efficiency and economical efficiency, external tendons using lifting hole anchorage system is the most effective method among the aforementioned methods. In order to verify the strengthening effectiveness, flexural experiments on the beams strengthened with external tendons using lifting hole anchorage system were carried out. The experiments were conducted on two groups of systems, the existing and the proposed external tendons using lifting hole anchorage system. In addition, An evaluation on ductility of the beams were conducted in this paper.

  • PDF

Zygoma-gear appliance for intraoral upper molar distalization (Zygoma-gear를 이용한 구치부 후방이동을 통한 비발치 치험례)

  • Nur, Metin;Bayram, Mehmet;Pampu, Alper
    • The korean journal of orthodontics
    • /
    • v.40 no.3
    • /
    • pp.195-206
    • /
    • 2010
  • The aim of this report is to present an intraoral upper molar distalization system supported with zygomatic anchorage plates (Zygoma-gear Appliance, ZGA). This system was used for a 16-year-old female patient with a Class II molar relationship requiring molar distalization. The system consisted of bilateral zygomatic anchorage plates, an inner-bow and heavy intraoral elastics. Distalization of the upper molars was achieved in 3 months and the treatment results were evaluated from lateral cephalometric radiographs. According to the results of the cephalometric analysis, the maxillary first molars showed a distalization of 4 mm, associated with a distal axial inclination of $4.5^{\circ}$. The results of this study show that an effective upper molar distalization without anchorage loss can be achieved in a short time using the ZGA. We suggest that this new system may be used in cases requiring molar distalization in place of extraoral appliances.

Indirect palatal skeletal anchorage (PSA) for treatment of skeletal Class I bialveolar protrusion (Indirect palatal skeletal anchorage (PSA)를 이용한 골격성 I급 양악 치성 전돌 환자의 치험례)

  • Chae, Jong-Moon
    • The korean journal of orthodontics
    • /
    • v.34 no.5 s.106
    • /
    • pp.458-464
    • /
    • 2004
  • Anchorage plays an important role in orthodontic treatment especially in the maxillary arch. In spite of many efforts for anchorage control. it was difficult for clinicians to predict the result of treatment because most of the treatment necessitated an absolute compliance of patients, But recently, skeletal anchorage has been used widely because it does not necessitate patient compliance but produces absolute anchorage. In addition titanium miniscrews have several advantages such as ease of insertion and removal. possible immediate leading and use in limited implantation spaces. In this case, a skeletal Class I bialveolar protrusion Patient was treated with standard edgewise mechanics using indirect active P.S.A. (palatal skeletal anchorage). The miniscrews in the paramedian area of the hard palate provided anchorage for retraction of the upper anterior teeth and remained firm and stable throughout treatment This indicates that the PSA can be used to reinforce anchorage for orthodontic treatment in the maxillary arch Consequently, this new approach can help effective tooth movement without patient compliance, when used with various transpalatal arch systems.

Quantitative damage identification in tendon anchorage via PZT interface-based impedance monitoring technique

  • Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.181-195
    • /
    • 2017
  • In this study, the severity of damage in tendon anchorage caused by the loss of tendon forces is quantitatively identified by using the PZT interface-based impedance monitoring technique. Firstly, a 2-DOF impedance model is newly designed to represent coupled dynamic responses of PZT interface-host structure. Secondly, the 2-DOF impedance model is adopted for the tendon anchorage system. A prototype of PZT interface is designed for the impedance monitoring. Then impedance signatures are experimentally measured from a laboratory-scale tendon anchorage structure with various tendon forces. Finally, damage severities of the tendon anchorage induced by the variation of tendon forces are quantitatively identified from the phase-by-phase model updating process, from which the change in impedance signatures is correlated to the change in structural properties.

EFFECT OF ANCHORAGE SYSTEMS ON LOAD TRANSFER WITH MANDIBULAR IMPLANT OVERDENTURES : A THREE-DIMENSIONAL PHOTOELASTIC STRESS ANALYSIS (하악 임플란트 overdenture에서 anchorage system이 하중전달에 미치는 영향)

  • Kim Jin-Yeol;Jeon Young-Chan;Jeong Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.5
    • /
    • pp.507-524
    • /
    • 2002
  • Load transfer of implant overdenture varies depending on anchorage systems that are the design of the superstructure and substructure and the choice of attachment. Overload by using improper anchorage system not only will cause fracture of the framework or screw but also may cause failure of osseointegration. Choosing anchorage system in making prosthesis, therefore, can be considered to be one of the most important factors that affect long-term success of implant treatment. In this study, in order to determine the effect of anchorage systems on load transfer in mandibular implant overdenture in which 4 implants were placed in the interforaminal region, patterns of stress distribution in implant supporting bone in case of unilateral vertical loading on mandibular left first molar were compared each other according to various types of anchorage system using three-dimensional photoelastic stress analysis. The five photoelastic overdenture models utilizing Hader bar without cantilever using clips(type 1), cantilevered Hader bar using clips(type 2), cantilevered Hader bar with milled surface using clips(type 3), cantilevered milled-bar using swivel-latchs and frictional pins(type 4), and Hader bar using clip and ERA attachments(type 5), and one cantilevered fixed-detachable prosthesis(type 6) model as control were fabricated. The following conclusions were drawn within the limitations of this study, 1. In all experimental models. the highest stress was concentrated on the most distal implant supporting bone on loaded side. 2. Maximum fringe orders on ipsilateral distal implant supporting bone in a ascending order is as follows: type 5, type 1, type 4, type 2 and type 3, and type 6. 3. Regardless of anchorage systems. more or less stresses were generated on the residual ridge under distal extension base of all overdenture models. To summarize the above mentioned results, in case of the patients with unfavorable biomechanical conditions such as not sufficient number of supporting implants, short length of the implant and unfavorable antero-posterior spread. selecting resilient type attachment or minimizing distal cantilever bar is considered to be appropriate methods to prevent overloading on implants by reducing cantilever effect and gaining more support from the distal residual ridge.

A Study on Design of Emergency Anchorage at Adjacent Waters of Wan-do Port (완도항 인근 수역 피항 정박지 지정 검토 연구)

  • Im, Nam-Kyun;Kim, Chol-Seong;Yang, Hyoung-Seon;Lee, Kyoung-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.1
    • /
    • pp.65-69
    • /
    • 2008
  • Now it is said that the insufficency of the designated anchorage for ships in approaching waters of Wan-do port is the one of reasons for marine safety accidents, when vessels encounter rough weather near the port. This research examined geographical feature in approaching areas of Wan-do port and suggested appropriate weather anchorage. The situations of fishing nets areas were investigated Marine vessel traffic flow was also examined. Through these research the optimal anchorage was suggested in the approaching waters of Wan-do port.

  • PDF

A Study on design of anchorage at approach waters of Wan-do port (완도항 인근 수역 정박지 지정 검토 연구)

  • Im, Nam-Kyun;Kim, C.S.;Yang, H.S.;Shin, M.K.;Yoon, J.Y.
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.05a
    • /
    • pp.181-185
    • /
    • 2007
  • Now it is said that the insufficency of the designated anchorage for ships in approaching waters of Wan-do port is one of reasons for marine safety accidents, when they encounter rough weather near the port. This research examined geographical feature in approaching areas of Wan-do port and suggested appropriate mate weather anchorage. The situations of fishing nets were investigated Marine vessel traffic flow was also examined The optimal anchorage was suggested considering these results.

  • PDF