• Title/Summary/Keyword: Anchorage performance

Search Result 126, Processing Time 0.023 seconds

Shear behavior of RC beams externally strengthened and anchored with CFRP composites

  • Al-Rousan, Rajai Z.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.447-456
    • /
    • 2017
  • The primary objective of this paper is to study the effectiveness of anchorage on the performance of shear deficient beams externally strengthened with CFRP composites. The overall behavior of the tested beams loaded up to failure, the onset of the cracking, and crack development with increased load and ductility were described. The use of CFRP composites is an effective technique to enhance the shear capacity of RC beams by using CFRP strips anchored into the tension side and from the top by 15-34% based on the investigated variables. Bonded anchorage of CFRP strips with width of 0.1h-0.3h to the beam resulted in a decrease in average interface bond stress and an increase in the effective strain of the FRP sheet at failure, which resulted in a higher shear capacity as compared with that of the U-wrapped beams without anchorage as well as delay or mitigate the sheet debonding from the concrete surface.

Seismic Performance Improvement of Concrete Gravity Dam by Post-tensioned Anchors (앵커공법을 적용한 기존 콘크리트 중력식 댐의 내진성능 보강방안)

  • Kim, Yongon;Kim, Se-Il;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.5
    • /
    • pp.49-53
    • /
    • 2013
  • This paper describes the assessment of seismic performance of the concrete gravity dam seismically reinforced by post-tensioned anchors. In order to evaluate the seismic performance, the response spectrum analyses have been carried out for 7 different configurations of the post-tensioned anchors, and then their performance improvement in the maximum tensile and compressive stresses is compared to each other. The comparative results demonstrate that the layout of the post-tensioned anchors strongly influences the seismic performance of the concrete gravity dam. In this study, the slightly-inclined vertical anchorage system shows the largest improvement on the overall performance of the seismically-excited concrete gravity dam.

1-D CNN deep learning of impedance signals for damage monitoring in concrete anchorage

  • Quoc-Bao Ta;Quang-Quang Pham;Ngoc-Lan Pham;Jeong-Tae Kim
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.1
    • /
    • pp.43-62
    • /
    • 2023
  • Damage monitoring is a prerequisite step to ensure the safety and performance of concrete structures. Smart aggregate (SA) technique has been proven for its advantage to detect early-stage internal cracks in concrete. In this study, a 1-D CNN-based method is developed for autonomously classifying the damage feature in a concrete anchorage zone using the raw impedance signatures of the embedded SA sensor. Firstly, an overview of the developed method is presented. The fundamental theory of the SA technique is outlined. Also, a 1-D CNN classification model using the impedance signals is constructed. Secondly, the experiment on the SA-embedded concrete anchorage zone is carried out, and the impedance signals of the SA sensor are recorded under different applied force levels. Finally, the feasibility of the developed 1-D CNN model is examined to classify concrete damage features via noise-contaminated signals. The results show that the developed method can accurately classify the damaged features in the concrete anchorage zone.

Shear Performance of Wood-Concrete Composite I - Shear Performance with Different Anchorage Length of Steel Rebar in Wood - (목재-콘크리트 하이브리드 부재의 전단성능 I - 목재 내 철근 정착 길이에 따른 전단성능 평가 -)

  • Lee, Sang-Joon;Eom, Chang-Deuk;Kim, Kwang-Mo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.186-193
    • /
    • 2012
  • The wood-concrete composite can be effectively applied for bridge superstructure, and the concept of fully composite action between each member is one of the most important consideration. Until now, related researches have been done mainly in North America and EU countries not enough to cover the fundamental studies. Therefore, this study is planned to perform one of the important issue for using the wood-concrete composite. The objective of this study is evaluation of shear performance with different anchorage length of steel rebar in wood. Prediction of the yield mode and the reference design value was firstly performed as the preliminary investigation. Then, initial stiffness, yield load and maximum load were derived from the shear test due to different anchorage length of the steel rebar (SD30A in Korean Standard) in wood. It was found out from this study that initial stiffness and yield load are not related with the anchorage length over 20 mm of anchorage length while maximum load shows increasing tendency till 60 mm of anchorage length. Pullout strength of inserted steel rebar in wood is considered to be one reason and this was also verified with the x-ray radiography.

Stress Analysis of PS Anchorage Zone Using Ultra High Performance Concrete (UHPC를 적용한 PS 정착부의 응력해석)

  • Kim, Jee Sang;Choi, Yoon Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1349-1360
    • /
    • 2013
  • The post-tensioned anchorage zones of normal concrete have larger cross sections because of congested reinforcements to resist high bearing and bursting stresses. The high compressive and tensile strength of newly developed UHPC (Ultra High Performance Concrete) may reduce the cross sectional dimensions and simplify the reinforcement details, if used for post-tensioned members. The Finite Element Analysis was performed to evaluate the mechanical behavior of post-tensioned anchorage zones using UHPC without anchorage plates and confining reinforcements. The results show that the maximum bursting stresses are less than the values given in current design code without failure due to vertical cracks. The location of maximum bursting stresses were at 0.2 times of width of the models. The bursting force from FEA is less than that is obtained using simplified formular in Korean Bridge Design Code.

Flexural Behavior of RC Beams Strengthened with CFRP Plate Using Multi-directional Channel-type Anchorage System (다방향 채널형 단부정착장치를 이용한 CFRP판 보강 RC 보의 휨거동)

  • Hong, Ki Nam;Han, Sang Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.171-180
    • /
    • 2008
  • The aim of this paper is to clarify the structural performance of RC beams strengthened with Carbon Fibre Reinforced Polymer(CFRP) plates using channel-type anchorage system. Twelve RC beams were specifically designed without and with a channel-type anchorage system, which was carefully detailed to enhance the benefits of the strengthening plates. All the twelve beams were identical in terms of their geometry but varied in their internal reinforcement, concrete strength. All the beams were tested under four point bending and extensively instrumented to monitor strains, cracking, load capacity and failure modes. The structural response of all the twelve beams is then critically analyzed in terms of deformability, strength and failure processes. It is shown that with a channel-type anchorage system, a brittle debonding failure of a strengthened beam can be transformed to an almost ductile failure with well-defined enhancement of structural performance in terms of both deformation and strength.

Prefabricated-HSPRCC panels for retrofitting of existing RC members-a pioneering study

  • Bedirhanoglu, Idris
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.1-25
    • /
    • 2015
  • The main goal of this study was to develop a convenient strengthening technique for retrofitting of reinforced concrete members. For this purpose a new retrofitting material so-called prefabricated-HSPRCC (high performance steel plate reinforced cementitious composite) panel was developed by using high performance concrete and perforated steel plate. Prefabricated-HSPRCC composes advantages of steel and high performance concrete. The prefabricated-HSPRCC panels were either only bonded on the specimens using epoxy mortar or anchored to the specimen by steel bolts as well as bonding. Effect of different variations such as prefabricated-HSPRCC panel thicknesses, steel plate thicknesses, puncture orientation of perforated steel plate, existence of anchorage etc. were studied through a simple experimental work. The behaviour of the specimens under vertical point load was also studied by using simple mechanics. The retrofitted specimens were found to exhibit much better performance both in terms of strength and deformation capability. The anchorage application was found to positively affect this improved performance. Furthermore, as a result of the tests the best parameters of prefabricated-HSPRCC plate for improving strength and deformation capacities were determined.

Influence of Anchorage of T-Plate on the Seismic Performance of RC Columns Strengthened with Unbounded Wire Rope Units (와이어로프 기반 비부착 보강된 RC 기둥의 내진거동에 대한 T형 강판 정착의 영향)

  • Sim, Jae-Il;Yang, Keun-Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.133-140
    • /
    • 2010
  • Five strengthened columns and an unstrengthened column were tested under constant axial load and cyclic lateral loads to examine the seismic performance of the unbounded strengthening procedure using wire ropes and T-plates. Main variables considered were the presence of mortar cover for strengthening steel element and anchorage method of T-plate. Test results clearly showed that T-plates having a proper anchorage contribute to transfer of applied moment as well as enhancement of ductility of reinforced concrete columns. However, T-plate not anchored fully into a column base can seldom transfer the externally applied moment, though it highly improves the ductility of column. The presence of mortar cover for strengthening steel elements is significantly effective in enhancing the initial stiffness and flexural capacity of the strengthened columns, but has an adversely effect on enhancing the ductility. The ultimate moment strength predicted from the extended section laminae method in better agreement with test results compared with predictions obtained using stress black specified in ACI 318-05.

Seismic Fragility Analysis Considering the Inelastic Behavior of Equipment Anchorages for High-Frequency Earthquakes (고진동수 지진에 대한 기기 정착부의 비탄성 거동을 고려한 지진취약도 평가)

  • Eem, Seunghyun;Kwag, Shinyoung;Choi, In-Kil;Jung, Jae-Wook;Kim, Seokchul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.261-266
    • /
    • 2021
  • Nuclear power plants in Korea were designed and evaluated based on the NRC's Regulatory Guide 1.60, a design response spectrum for nuclear power plants. However, it can be seen that the seismic motion characteristics are different when analyzing the Gyeongju earthquake and the Pohang earthquake that has recently occurred in Korea. Compared to the design response spectrum, seismic motion characteristics in Korea have a larger spectral acceleration in the high-frequency region. Therefore, in the case of equipment with a high natural frequency installed in a nuclear power plant, seismic performance may be reduced by reflecting the characteristics of domestic seismic motions. The failure modes of the equipment are typically structural failure and functional failure, with an anchorage failure being a representative type of structural failure. In this study, comparative analyses were performed to decide whether to consider the inelastic behavior of the anchorage or not. As a result, it was confirmed that the seismic performance of the anchorages could be increased by considering the inelastic behavior of an anchorage.

Anchor plate design for mechanical anchorage of large diameter reinforcement in nuclear containment buildings (원전 구조물용 대구경 철근의 기계적 정착을 위한 정착판 설계)

  • 이성호;천성철;오보환;박형철;나환선;김상구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.136-139
    • /
    • 2003
  • The re-bar work in the construction of nuclear power plants is difficult, due to the large diameter and the congestion of reinforcements. The mechanical anchorage offers a potential solution for this problem. However, the requirements or the standards for the shape of anchor plate of mechanical anchor has not been clearly established up to now. In this paper, the required performance of the mechanical anchorage for large diameter reinforcements in nuclear power plants are proposed, and the anchor plates are designed through nonlinear finite element analysis. The diameters of anchor plate are determined to be $\sqrt{5}$ times of reinforcement diameter for longitudinal reinforcements and $\sqrt{10}$ for shear reinforcements. The thickness of anchor plates is optimized as 0.3-0.35 times of reinforcement diameter for longitudinal reinforcements and 0.5~0.56 times for shear reinforcements.

  • PDF