• 제목/요약/키워드: Anchor tension

검색결과 117건 처리시간 0.031초

Application by Auto Back Tension System (오토백 인장장치의 적용성)

  • Park, Sang-Kook
    • 기술발표회
    • /
    • 통권2006호
    • /
    • pp.66-72
    • /
    • 2006
  • The ground anchoring has been utilized over 40 years. It is growing the application of the removal ground anchor with tension force for holding earth retaining constructions in the city. It transmits tension stress of prestressed steel wire through grouting to fixed the ground that is of great advantage adjacent ground stability. Nowadays, we can find the compression dispersion anchor on many site. But, it has some problems in behavior of anchors because of impossible to tense p.c strand uniformly under the existing equipment due to different length of p c strand. Hence, motive of this research was to study the application of the newly developed tension system, that analyze and compare with the current anchoring method build on the data of in-site test and laboratory test. As a result, in case of auto back tension system, it became clear that tension pressure was equally distributed among the steal wires but the existing tension system showed sign of instability by indicating stress deflection of about 30% compare with design load. This can cause an ultimate failure of the concentrated p.c strand and a shear failure of ground.

  • PDF

Effect of the characteristics of buoy on the holding power of trapnet (부이의 특성이 통발어구의 고정력에 미치는 영향)

  • LEE, Gun-Ho;CHO, Sam-Kwang;KIM, In-Ok;CHA, Bong-Jin;JUNG, Seong-Jae
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • 제53권4호
    • /
    • pp.309-316
    • /
    • 2017
  • In this paper, numerical modeling is conducted to analyze the tension of an anchor line by varying the size and drag coefficient of a buoy when the trapnet is influenced by the wave and the current simultaneously. A mass-spring model was used to analyze the behavior of trapnet underwater under the influence of waves and current. In the simulation of numerical model, wave height of 3, 4, 5 and 6 m, a period of 4.4 s, and the flow speed of 0.7 m/s were used for the wave and current condition. The drag coefficients of buoy were 0.8, 0.4 and 0.2, respectively. The size of buoy was 100, 50 and 25% based on the cylindrical buoy ($0.0311m^3$) used for swimming crab trap. The drag coefficient of the trapnet, the main model for numerical analysis, was obtained by a circular water channel experiment using a 6-component load cell. As a result of the simulation, the tension of the anchor line decreased proportional to buoy's drag coefficient and size; the higher the wave height, the greater the decrease rate of the tension. When the buoy drag coefficient and size decreased to one fourth, the tension of the anchor line decreased to a half and the tension of the anchor line was lower than the holding power of the anchor even at 6 m of wave height. Therefore, reducing the buoy drag coefficient and size appropriately reduces the trapnet load from the wave, which also reduces the possibility of trapnet loss.

Analysis on Reinforcing Effect at Fixed Part of Compression Anchor by Laboratory Element Tests (실내요소실험에 의한 압축형 앵커의 정착부 보강효과 분석)

  • 홍석우
    • Journal of Ocean Engineering and Technology
    • /
    • 제16권5호
    • /
    • pp.49-55
    • /
    • 2002
  • The compression anchor is characterized by decrement of progressive failure, simple site work, economy and durability compared with tension anchor. In this paper, compression anchor is analysed through the laboratory element tests. The formula to be estimate the grout strength in fixed part of compression anchor and the effective reinforcement method for several types of soil were suggested. The following conclusions were made from this study : (1) A formula, which is able to calculate the grout strength in the fixed part of the compression anchor, is suggested. (2) The strength increment ratios( $R_{si}$) are 100%, 132%, 147%, 217% according to the reinforcement method of grout. The reinforcement method is Non, Outside spiral, Inside-Outside spiral, Steel pipe, respectively. (3) The strength increment ratios( $R_{si}$) by reinforcing can be 8.23 times the strength increment effect according to the reinforcement types and ground confining pressure. (4) The steel pipe reinforcement is most effective in decomposed soil while, in the case of hard rock ground, high confining pressure is exerted on the grout, so there is no need to use reinforcements.

Evaluation of Concrete Cone Breakout Strength of Expansion Anchors (익스팬션 앵커의 콘크리트 콘 파괴강도 평가)

  • Kim, Sung Yong;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • 제15권6호통권67호
    • /
    • pp.649-660
    • /
    • 2003
  • The paper presents an evaluation of the tensile strength of the expansion anchor that can cause failure in the concrete based on the design of the anchorage. Tests of the heavy-duty anchor and the wedge anchor that are domestically manufactured and installed in plain concrete members are conducted to probe the effects of the embedded depth, concrete strength, and anchors spacing. The design of post-installed steel anchors is presented using the Concrete Capacity Design (CCD) approach. The CCD method is applied to predict the concrete failure load of the expansion anchor in plain concrete under monotonic loading for important applications. The concrete tension capacity of the fastenings with heavy-duty anchors and wedge anchors in plain concrete predicted using the CCD method is compared with the test results. For the CCD method, a normalization coefficient of 9.94 is appropriale for the nominal concrete breakout strength of an anchor or a group of wedge anchors in tension. On the other hand, a normalization coefficient of 11.50 is appropriate for the nominal concrete breakout strength of an anchor or a group of heavy-duty anchors in tension.

Ground Anchor Testing on Temporary Excavations (일반 가설앵커의 문제점과 개선방향)

  • 김성규;김낙경;김정렬
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.545-552
    • /
    • 2003
  • For temporary excavation support in a congested urban area, the strand of ground anchor should be removed to get permission of the private land to install anchors. But the strand doesn't need to be removed in the outside city area after use. So the anchor body, tension anchor, is fabricated in-situ. The unbonded length of This anchor has several strands, which wrap only one sheath. When the anchor body is carried into job-site or installed in the bore hole, the sheath is torn easily because it is a very week material. So the grout permeate into the torn sheath. Because of that, the load doesn't transfer to the bond length of ground anchors. It may indicate that load is being transferred along the unbonded length and thus within the potential slip surface assumed for overall stability of the anchored system. The load tests were performed on seven low-pressure grouted anchors installed in weathered soil to verify its problems. Four anchors(Type A) have the unbonded length, which consist of five strands and a week sheath and three anchors(Type B) have strands, which is covered by plastic sheath filled with grease, in the unbonded length. Both anchors are compared with load tests results.

  • PDF

A study on the characteristics of multi load transfer ground anchor system (다중정착 지반앵커의 하중전달 특성에 관한 연구)

  • Kim, Ji-Ho;Jeong, Hyeon-Sic;Kwon, Oh-Yeob;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제16권1호
    • /
    • pp.25-50
    • /
    • 2014
  • In order to identify a load transfer mechanism of ground anchors, the behavior of multi load transfer ground anchor systems was investigated and compared with those of compression type anchors and tension type anchors. Large scale model tests were performed and stress-strain relationships were obtained. The load transfer mechanism of ground anchors was also investigated in the field tests. Finally, numerical analyses to predict the load-displacement relationships of anchors were conducted. It is concluded that the load transfer characteristics of MLT anchors are mechanically much more superior in the pull-out resistance effect than those of existing compression and tension type anchors. From the results of research work, we could suggest that the max pull-out capacity of anchor capacity to each the soil condition. Also, the MLT anchors can be used to achieve both structural enhancement and economic construction in earth retaining or supporting structures.

Tension Force Monitoring of Tension Type Ground Anchor Using Optical FBG Sensors (광섬유 센서를 이용한 인장형 그라운드 앵커의 장력측정)

  • Sung, Hyun-Jong;Kim, Young-Sang;Kim, Jae-Min;Park, Gui-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • 제27권6호
    • /
    • pp.17-26
    • /
    • 2011
  • Ground anchor method is one of the most popular reinforcing technology in Korea. For the sound monitoring of slope reinforced by permanent anchor for a long period, monitoring the tension force of ground anchor is very important. However, special technology except conventional load cell has not been developed for this purpose. In this paper, a new method is described to replace the conventional strain gauge and V.W. type load cell which has been commonly used as a prestress force monitoring tool for a short-term and long-term. Four 11.5 m long strain detectable tension type anchors were made using FBG sensor embedded tendon since FBG sensor is smaller than strain gauge type load cell and does not have noise from electromagnetic wave. Each two set strain detectable tension type anchors were installed into the different ground conditions, i.e., soft rock and weathered granite soil. Prestress force of ground anchor was monitored during the loading-unloading step from in-situ pullout test using proposed FBG sensor embedded in the tendon and the conventional load cell Test results show that the prestress force monitored from FBG sensor may well be used practically, for it almost matches with that measured from expensive load cell.

Pullout Characteristics of MC Anchor in Shale Layer (셰일지반에 설치된 MC앵커의 인발특성)

  • Lee, Bongjik;Kim, Josoon;Lee, Jongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • 제13권1호
    • /
    • pp.53-61
    • /
    • 2012
  • In this study, the research on MC anchor has been developed as composite type has done. MC anchor exerts bearing pressure on pre-bored hole where the end fixing device is expanded. Therefore, the uplift capacity is to be increased and it has the characteristics that the anchor body is not eliminated from the ground even if the grouting is not carried out properly. Furthermore, it reduces the loss of tension and raises the construction availability by inserting the reinforced bar as well as the anchor cable, while it can improve the long-term stability because the nail is expected to play the role when the loss of the anchor cable is occurred in a long-term. However, because the resistance mechanism of the compound anchor such as MC anchor is different from friction anchor, the estimation method of the uplift capacity by the frictional force of the ground and the grout is not proper. Particularly, in domestic cases, the problem to overestimate or underestimate the uplift capacity is expected because the design method considering the soil characteristics about the compound anchor has not been developed. Therefore, in this study, in order to evaluate the characteristics of MC anchor and a kind of compound anchor, we measured the uplift, the tension and the creep by nine anchors tests in shale ground that the fluctuation of the strength is great. In addition, we analyzed the test result comparing to the result of the general friction anchor and evaluated the characteristics of MC anchor movement to gather the results. As a result of the test, we found the effect that the uplift capacity is increased in shale ground comparing to the general friction anchor.

Load Transfer of Tension and Compression Anchors in Weathered Soil (인장형 앵커와 압축형 앵커의 하중전이에 관한 연구)

  • 김낙경
    • Journal of the Korean Geotechnical Society
    • /
    • 제17권3호
    • /
    • pp.59-68
    • /
    • 2001
  • 풍화토 지반에 설치된 그라운드 앵커의 하중전이 현상을 규명하기 위하여 성균관대학교 지반시험장에서 인발시험을 수행하였다. 지반과 구조물을 일체화시키는데 사용하는 앵커는 앵커체와 지반의 마찰력에 의해서 구조물을 지지하는 역할을 하며 앵커의 하중과 변형의 관계를 규명하기 위해서는 앵커의 마찰력 분포의 변화(하중전이)가 중요한 요소가 된다. 하중 재하시 앵커체에 발생하는 하중전이 분포는 앵커의 인발 지지력과 밀접한 관계가 있고 앵커체의 종류(인장형 또는 압축형), 정착장의 길이, 지반 조건 등에 따라 분포 양상이 변하기 때문에 하중전이를 이해하기 위해서는 강선과 그라우트의 하중분포 그리고 앵커 그라우트체와 지반과의 마찰력 분포를 알아야 한다. 앵커의 자유장의 강선에 작용하는 응력, 그라우트체에 작용하는 응력, 그리고 정착장 강선의 응력을 계측하여 강선과 그라우트의 정착응력 및 그라우트와 지반에서의 마찰력 분포를 구함으로써 강선-그라우트-지반의 복합적인 거동에 따른 각 하중 단계마다의 하중전이 분포를 구하였다. 또한 현장시험 결과의 신뢰성 확보를 위하여 수치해석 모델링을 통하여 해석을 수행하여 비교하였다.

  • PDF

Application of Compression dispersion Anchor Using Auto back Equipment (자동 인장 장치에 의한 압축 분산형 앵커의 적용성)

  • Lee Song;Park Sang Kook;Jeong Young Eun;Lee Sung Won
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.994-1000
    • /
    • 2004
  • It is growing the application of the removal ground anchor with tension force for earth retaining constructions in the downtown. Nowadays, we can find the compression dispersion anchor on many site. But, it is occur some probelems in behabior of anchors because of impossible to tense p.c strand uniformly with existing equipment due to different length of p.c strand. So we tried to tense each p.c strand uniformly with auto back equipment in-situ test. This study compared and analyzed in-situ test results of an existing equipment with those of auto back equipment by appling elastic theory. As a result of the test, It has been proved that differences of tension force in the existing equipment increases with increasing the number of p.c strands. This can cause the ultimate failure of the concentrated p.c strand and the shear failure of ground. So it has been proved that auto back equipment is necessary.

  • PDF