• 제목/요약/키워드: Anchor distribution

검색결과 100건 처리시간 0.024초

그라운드 앵커의 하중전이 현상에 대한 연구 (A Study on Load Transfer of Ground Anchors)

  • 김낙경;박완서
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.441-448
    • /
    • 1999
  • The load distribution in a ground anchor is very complex because it involves three different materials(soil, grout, and steel), which sometimes act as composite sections (bonded length) or separately (unbounded length). Therefore it is very hard to understand load transfer mechanism on the anchor. In order to understand the load transfer, it is essential to consider the load distribution In the three different materials. On these purposes, full scale anchor test is planned on the geotechnical site at Sunkyunkwan University Prior to the test, modeling and analyses of the load transfer mechanism were performed on the data from the case histories.

  • PDF

FBG 센서가 내장된 스마트 앵커를 이용한 앵커와 그라우트의 하중전이 측정 (Measurement of Load Transfer between Anchor and Grout using Optical FBG Sensors embedded in Smart Anchor)

  • 서동남;김영상;김재민
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.505-510
    • /
    • 2008
  • FBG Sensor, which is smaller than strain gauge and has better durability and does not have a noise from electromagnetic waves, was adapted to develope a smart anchor. A series of pullout tests were performed to verify the feasibility of smart anchor and find out the load transfer mechanism around the steel wire fixed to rock with grout. Distribution of shear stresses at steel wire-grout interface is assessed from the measured strain distribution by the optical fiber sensors and compared with stress distributions predicted by Farmer's and Aydan's formulas. It was found that present theoretical formulas may underestimate the failure depth and magnitude of shear stresses when the pullout loads increase.

  • PDF

Theoretical determination of stress around a tensioned grouted anchor in rock

  • Showkati, Alan;Maarefvand, Parviz;Hassani, Hossein
    • Geomechanics and Engineering
    • /
    • 제8권3호
    • /
    • pp.441-460
    • /
    • 2015
  • A new theoretical approach for analysis of stress around a tensioned anchor in rock is presented in this paper. The solution has been derived for semi-infinite elastic rock and anchor and for plane strain conditions. The method considers both the anchor head bearing plate and its grouted bond length embedded in depth. The solution of the tensioned rock anchor problem is obtained by superimposing the solutions of two simpler but fundamental problems: A distributed load applied at a finite portion (bearing plate area) of the rock surface and a distributed shear stress applied at the anchor-rock interface along the bond length. The solution of the first problem already exists and the solution of the shear stress distributed along the bond length is found in this study. To acquire a deep understanding of the stress distribution around a tensioned anchor in rock, an illustrative example is solved and stress contours are drawn for stress components. In order to verify the results obtained by the proposed solution, comparisons are made with finite difference method (FDM) results. Very good agreements are observed for the teoretical results in comparison with FDM.

쓰레기 매립층에서 그라운드 앵커의 극한하중 및 하중분포 (Ultimate Load and Load Distribution of Ground Anchor in Waste Landfill)

  • 김성규;조규완;김웅규
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.1434-1441
    • /
    • 2005
  • For anchored system applications, each ground anchor is tested after installation and prior to being put into service to loads that exceed the design. This load testing methodology, combined with specific acceptance criteria, is used to verify that the ground anchor can carry the design load without excessive deformations and that the assumed load transfer mechanisms have been properly developed behind the assumed critical failure surface. After acceptance, the ground anchor is stressed to a specified load and the load is locked-off. The two types of load tests conducted during the research program included performance test and creep test which were carried out in accordance with testing procedures by AASHTO(AASHTO 1990) and FHWA(Weatherby 1998) at Samsung-Dong 00 Site. Form the measurements, ultimate load and creep rate of anchors are proposed for straight shaft pressured grouted anchors in waste landfill. The load distribution on the grout was obtained from the measured strain data at each fraction of the ultimate load during the load tests.

  • PDF

Detection of flaw in steel anchor-concrete composite using high-frequency wave characteristics

  • Rao, Rajanikant;Sasmal, Saptarshi
    • Steel and Composite Structures
    • /
    • 제31권4호
    • /
    • pp.341-359
    • /
    • 2019
  • Non-monolithic concrete structural connections are commonly used both in new constructions and retrofitted structures where anchors are used for connections. Often, flaws are present in anchor system due to poor workmanship and deterioration; and methods available to check the quality of the composite system afterward are very limited. In case of presence of flaw, load transfer mechanism inside the anchor system is severely disturbed, and the load carrying capacity drops drastically. This raises the question of safety of the entire structural system. The present study proposes a wave propagation technique to assess the integrity of the anchor system. A chemical anchor (embedded in concrete) composite system comprising of three materials viz., steel (anchor), polymer (adhesive) and concrete (base) is considered for carrying out the wave propagation studies. Piezoelectric transducers (PZTs) affixed to the anchor head is used for actuation and the PZTs affixed to the surrounding concrete surface of the concrete-anchor system are used for sensing the propagated wave through the anchor interface to concrete. Experimentally validated finite element model is used to investigate three types of composite chemical anchor systems. Studies on the influence of geometry, material properties of the medium and their distribution, and the flaw types on the wave signals are carried out. Temporal energy of through time domain differentiation is found as a promising technique for identifying the flaws in the multi-layered composite system. The present study shows a unique procedure for monitoring of inaccessible but crucial locations of structures by using wave signals without baseline information.

세립 사질토 지반에 설치된 석션 앵커의 수평 지지력 (Capacity of Horizontally Loaded Suction Anchor Installed in Silty Sand)

  • 김수린;추연욱;김동수;성홍근
    • 한국해양공학회지
    • /
    • 제27권1호
    • /
    • pp.59-66
    • /
    • 2013
  • A suction anchor is one of the most popular anchors for deepsea floating systems. An anchor used for catenary mooring is predominantly under a horizontal load. In this study, the behavior of a suction anchor installed in cohesionless soil was investigated when the anchor was mainly subjected to a horizontal load induced by a catenary line. In order to study the behavior of the suction anchor, 3D FEM analysis models were developed and analyzed. Depending on the location of the load (padeye), the ultimate horizontal load was monitored. The distributions of the reaction forces around the anchor induced by the seabed were analyzed using the circumferential stress to understand the behavior of the suction anchor under a horizontal load.

고강도 강연선용 앵커헤드의 형상변화에 따른 비선형 거동특성 분석 (Nonlinear Analysis of Anchor Head for High Strength Steel Strand)

  • 노명현;성택룡;김진국
    • 한국전산구조공학회논문집
    • /
    • 제25권2호
    • /
    • pp.163-173
    • /
    • 2012
  • 이 연구에서는 프리스트레싱용 고강도 강연선의 정착장치 중 강연선을 직접 정착하는 앵커헤드(anchor head)에 대해 거동특성을 분석하고, 앵커헤드의 제원을 결정하는 단계에 있어서 해석적 검토에 요구되는 프로세스에 대해 정립하였다. 앵커헤드는 쐐기와의 접촉(contact)을 통해 강연선으로부터의 힘이 전달되고 거동변화에 따라 접촉상태 또한 변하게 된다. 이를 고려한 상세 거동분석을 위해 쐐기와 헤드 사이의 접촉(contact)조건을 설정하였으며, 앵커헤드의 비선형 재료모델을 적용하여 기하 및 재료 비선형성을 고려한 구조해석을 수행하였다. 해석결과로부터 다음의 결과를 얻을 수 있었다. 앵커헤드의 거동은 앵커헤드와 쐐기 간의 상호거동에 크게 영향을 받기 때문에 초기 설계단계부터 상대 영향을 고려해야 한다. 쐐기홀(wedge hole)의 배치는 층배열(layered) 보다는 원형배열(circular)이 보다 응력분배에 효과적이고, 쐐기홀의 간격을 증가시키고 헤드 하면 구멍의 크기를 줄여 구멍사이 강재의 두께를 다소 늘이는 것이 구조거동에 효과적이다.

구치 편측확장을 위한 Precision Lingual Arch 적용시 응력분포에 관한 유한요소법적 연구 (AN ANALYSIS OF STRESS DISTRIBUTION IN THE CASE OF UNILATERAL MOLAR EXPANSION WITH PRECISION LINGUAL ARCH BY FINITE ELEMENT METHOD)

  • 구본찬;손병화
    • 대한치과교정학회지
    • /
    • 제24권3호
    • /
    • pp.721-733
    • /
    • 1994
  • Orthodontic tooth movement is closely related to the stress on the periodontal tissue. In this research the finite element method was used to observe the stress distribution and to find the best condition for effective tooth movement in the case of unilateral molar expansion. The author constructed the model of lower dental arch of average Korean adult and used $.032'\times.032'\times60mm$ TMA wire. The wire was deflected in the horizontal and vertical direction to give the 16 conditions. The following results were obtained ; 1. When the moment and force were controlled properly the movement of anchor tooth was minimized and the movement of moving tooth was maximized. 2. As the initial horizontal deflection increased the buccal displacement of both teeth was also increased. As the initial horizontal deflection increased the lingual movement of anchor tooth and the buccal movement of moving tooth increased. 3. When the initial horizontal and vertical deflection rate was 1.5 the effective movement of moving tooth was observed with minimal displacement of anchor tooth.

  • PDF

영구 앵커의 구조적 안정성에 관한 실험적 연구 (Experimental Study for the Structural Stability of Permanent Anchor)

  • 유남재;박병수;박찬덕;홍영길;이종용
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권5호
    • /
    • pp.87-98
    • /
    • 2006
  • 본 연구는 풍화암에 근입된 영구 앵커의 극한인발력에 관한 연구를 수행하기 위하여 현장에서 실규모 인발시험을 실시한 실험 결과이다. 현장 실물 실험에서는 정착길이가 다른 4개의 앵커에 대한 하중-변위 곡선으로부터 극한인발력을 산정하였다. 또한, 앵커의 수용 여부를 결정하기 위해 단계별 최대하중에서 15분 동안의 크리프 시험을 실시하여 극한하중까지의 크리프치를 평가하였다. 그리고 풍화암에 근입된 영구 앵커의 파괴메카니즘을 규명하기 위해 지표면에 다이얼게이지를 설치하여 하중 변화에 따른 지반의 파괴 거동 범위를 측정하였다.

Modeling and optimization of infill material properties of post-installed steel anchor bolt embedded in concrete subjected to impact loading

  • Saleem, Muhammad
    • Smart Structures and Systems
    • /
    • 제29권3호
    • /
    • pp.445-455
    • /
    • 2022
  • Steel anchor bolts are installed in concrete using a variety of methods. One of the most common methods of anchor bolt installation is using epoxy resin as an infill material injected into the drilled hole to act as a bonding material between the steel bolt and the surrounding concrete. Typical design standards assume uniform stress distribution along the length of the anchor bolt accompanied with single crack leading to pull-out failure. Experimental evidence has shown that the steel anchor bolts fail owing to the multiple failure patterns, hence these design assumptions are not realistic. In this regard, the presented research work details the analytical model that takes into consideration multiple micro cracks in the infill material induced via impact loading. The impact loading from the Schmidt hammer is used to evaluate the bond condition bond condition of anchor bolt and the epoxy material. The added advantage of the presented analytical model is that it is able to take into account the various type of end conditions of the anchor bolts such as bent or U-shaped anchors. Through sensitivity analysis the optimum stiffness and shear strength properties of the epoxy infill material is achieved, which have shown to achieve lower displacement coupled with reduced damage to the surrounding concrete. The accuracy of the presented model is confirmed by comparing the simulated deformational responses with the experimental evidence. From the comparison it was found that the model was successful in simulating the experimental results. The proposed model can be adopted by professionals interested in predicting and controlling the deformational response of anchor bolts.