• Title/Summary/Keyword: Anatomical human model

Search Result 66, Processing Time 0.024 seconds

Reconstructing individual hand models from motion capture data

  • Endo, Yui;Tada, Mitsunori;Mochimaru, Masaaki
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • In this paper, we propose a new method of reconstructing the hand models for individuals, which include the link structure models, the homologous skin surface models and the homologous tetrahedral mesh models in a reference posture. As for the link structure model, the local coordinate system related to each link consists of the joint rotation center and the axes of joint rotation, which can be estimated based on the trajectories of optimal markers on the relative skin surface region of the subject obtained from the motion capture system. The skin surface model is defined as a three-dimensional triangular mesh, obtained by deforming a template mesh so as to fit the landmark vertices to the relative marker positions obtained motion capture system. In this process, anatomical dimensions for the subject, manually measured by a caliper, are also used as the deformation constraints.

Numerical Simulation of OOP(Out-of-Position) Problem with$5_{th}$ Percentile Female F.E Model ($5_{th}$ Percentile 성인 여성 유한요소 모델을 이용한 OOP(Out-of-Position) 문제에 대한 수치해석)

  • 나상진;최형연;이진희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.177-183
    • /
    • 2004
  • The out-of-positioned small female drivers are most likely to be injured during airbag deployment due to their stature and proximity to the steering wheel and airbag module. In order to investigate the injury mechanisms, some experimental studies with Hybrid III 5% female dummy and with female cadavers could be found from the open literatures. However, the given information from those experimental studies is quite limited to the standard conditions and might not be enough to estimate the airbag inflation aggressiveness regarding on the occupant responses and injury. In this study, a finite element analysis has been performed in order to investigate the airbag-induced injuries. A finite element 5% female human model in anatomical details has been developed. The validation results of the model are also introduced in this paper.

A Physical Ear Model for Evaluating Hybrid-acoustic Sensor Characteristics of Fully Implantable Middle-ear Hearing Aid (완전 이식형 인공중이의 하이브리드 음향센서 특성 평가를 위한 귀 물리모델)

  • Shin, Dong Ho;Moon, Ha Jun;Kim, Myoung Nam;Cho, Jin-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.8
    • /
    • pp.923-929
    • /
    • 2019
  • In this paper, biomimetic based physical ear model proposed for measuring the characteristics of a hybrid-acoustic sensor for fully implantable middle-ear hearing aid. The proposed physical ear model consists of the external ear, middle-ear, and cochlea. The physical ear model was implemented based on the anatomical structure and CT images of the human ear. To confirm the characteristics of the ear model, the vibrational characteristics of the stapes was measured after applying sound pressure to the tympanic membrane. The measured results were compared with the vibrational characteristics of the human temporal bone specified by ASTM F2504-05. Through the comparison results, the feasibility of the proposed ear model was confirmed. Then, after attaching the hybrid-acoustic sensor to the ear model, the output characteristics of the ECM and acceleration sensor were measured according to the sound pressure. The measured results were compared with previous studies using human temporal bone, and the usefulness of the proposed physical ear model was verified through the analysis results.

Comparison of SARs of Human Heads Exposed to Mobile Phone (이동통신단말기에 노출된 인체 두부에 따른 전자파 비흡수율 비교)

  • Lee, Ae-Gyeong;Choe, Hyeong-Do;Choe, Jae-Ik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.11
    • /
    • pp.32-41
    • /
    • 2000
  • A new anatomical head model was implemented based on the MR and CT images of the head of a volunteer whose head shape is close to the domestic standard. In order to compare SARs (specific absorption rates) of heads with different shapes, we calculated SARs in the two anatomical head models. The one is the new model and the other is that of the black race and was made at National Library Medicine in USA. The head model and a phone model were arranged in the computational space to be the touch or cheek position of CENELEC (European Committee for Electrotechnical Standardisation) and FCC guidelines. From the obtained results, we can see that the smaller head produces the higher whole head-averaged SAR. However, it seems that the localized SAR averaged over 1 g or 10 g is more dependent on the shape of the auricle rather than that of the head size.

  • PDF

Development of Korean Male Body Model for Computational Dosimetry

  • Lee, Ae-Kyoung;Choi, Woo-Young;Chung, Min-Suk;Choi, Hyung-Do;Choi, Jae-Ick
    • ETRI Journal
    • /
    • v.28 no.1
    • /
    • pp.107-110
    • /
    • 2006
  • The dimensions of the human body vary by age, sex, and race. The internal structure and outer dimensions of a body exposed to an electromagnetic field is important for accurate dosimetry. The average physical size of Korean adult males between the ages 18 to 24 was investigated, and a male volunteer was selected whose physical condition is within the physical standards, ${\pm}5%$. Magnetic resonance images and partially computerized tomography images of the volunteer were acquired. The intervals between the transverse images were 1 mm for the head and 3 mm for the rest of the body. About 30 different tissues were manually classified by an anatomist on the raw images, and the segmented images were implemented in the form of a text file appropriate for numerical formulation.

  • PDF

Observation Practice Using a Human Body Model in Medical Terminology Class (의학용어 수업에서 인체 모형을 이용한 관찰 실습)

  • Hyun-Woo Jeong;Hojun Yeom;Sangsoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.35-42
    • /
    • 2024
  • Biomedical engineering is a discipline that diagnoses and treats human diseases using engineering techniques based on medical and biological understanding. Proper biomedical engineering education requires education on medical terminology, human anatomy, and human physiology, but students have a preconceived notion that these basic medical subjects are subjects to be memorized. In order to eliminate these students' preconceptions, various educational methods must be developed so that students can easily access basic medical subjects. In this paper, we present a method to increase learning effectiveness by introducing observation practice of a human anatomical model to the medical terminology subject. The half-body model of the human body is a form in which various organs are assembled and can be observed by disassembling them one by one. This observation exercise consisted of questions about the organs of the head, neck, chest, and abdomen, with students working in groups to find answers. After the practice, students evaluated that this practice motivated them to learn and made it easier to understand the lecture.

Design of A Human Model of the Moving-Actuator Type Total Artificial Heart

  • Chang, Jun-Keun;Min, Byoung-Goo
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.65-70
    • /
    • 1997
  • A human version of Korean total artificial heart(TAM) was designed basso on the magnetic resonance imaging(MRI) data To obtain accurate measurement or human thoracic structure including the valvular sited we analyzed the dimensions of the natural heart of healthy persons and cardiomyopathy(CM) patients. The MRI findings were analyzed to measure the volume of the thoracic cavity that would be occupied by the TAM. The design upgrade of the mechanical performed was also performed with the computer aided design(CAD) system to develop a new version of Korean TAH.

  • PDF

Guidelines for Manufacturing and Application of Organoids: Brain

  • Taehwan Kwak;Si-Hyung Park;Siyoung Lee;Yujeong Shin;Ki-Jun Yoon;Seung-Woo Cho;Jong-Chan Park;Seung-Ho Yang;Heeyeong Cho;Heh-In Im;Sun-Ju Ahn;Woong Sun;Ji Hun Yang
    • International Journal of Stem Cells
    • /
    • v.17 no.2
    • /
    • pp.158-181
    • /
    • 2024
  • This study offers a comprehensive overview of brain organoids for researchers. It combines expert opinions with technical summaries on organoid definitions, characteristics, culture methods, and quality control. This approach aims to enhance the utilization of brain organoids in research. Brain organoids, as three-dimensional human cell models mimicking the nervous system, hold immense promise for studying the human brain. They offer advantages over traditional methods, replicating anatomical structures, physiological features, and complex neuronal networks. Additionally, brain organoids can model nervous system development and interactions between cell types and the microenvironment. By providing a foundation for utilizing the most human-relevant tissue models, this work empowers researchers to overcome limitations of two-dimensional cultures and conduct advanced disease modeling research.

A Research on Methods of Acupuncture Therapies(鍼法) Based on New Classification Models : Focused on Currently Practiced Methods of Acupuncture Therapies(鍼法) in Korean Medicine(韓醫學) (새로운 분류 모델에 기초한 침법(鍼法) 고찰 : 한의학(韓醫學)에서 사용되고 있는 침법(鍼法)을 중심으로)

  • Kye, Kangyoon;Kim, Byoungsoo
    • The Journal of Korean Medicine
    • /
    • v.42 no.3
    • /
    • pp.9-25
    • /
    • 2021
  • Objectives : The purpose of this study is to analyze Methods of Acupuncture Therapies(鍼法) that are currently practiced in Korean medicine(韓醫學) and to consider the directions in further research and development. Methods : Methods of Acupuncture Therapies(鍼法) were selected based on Acupuncture Medicine textbook of College of Korean Medicine and published researches. Then, selected Methods of Acupuncture Therapies(鍼法) were categorized by characteristics. Also, the selected Methods of Acupuncture Therapies(鍼法) were comprehensively classified according to new models, Heaven-Earth-Human(天地人) model and Dimensional model. The directions of further research and development in Methods of Acupuncture Therapies(鍼法) were considered based on this. Results & Conclusions : In the categorization by characteristics, sufficient basic references were unavailable to consider the directions in further research and development. However, comprehensive classification using Heaven-Earth-Human(天地人) model and Dimensional model was able to be used as references for estimating the relative positions of each Method of Acupuncture Therapies(鍼法) and also, establishing the directions in further research and development. Regarding the results from comprehensive classification, the studies on Physiology of Four Seasons and Day and night(晝夜) are required. Besides, the acceptance of Western medical contents which include anatomical structures is unavoidable to achieve the development in Methods of Acupuncture Therapies(鍼法). In addition, it is necessary to propose researches founded on an integrated theory of Viscera and Bowels(藏府) and Meridian and Collateral(經絡) which enables to embrace the physiological function of human body. Upon this, the creation of a Four-dimensional Methods of Acupuncture Therapy(鍼法) is also required.

A Non-invasive Real-time Respiratory Organ Motion Tracking System for Image Guided Radio-Therapy (IGRT를 위한 비침습적인 호흡에 의한 장기 움직임 실시간 추적시스템)

  • Kim, Yoon-Jong;Yoon, Uei-Joong
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.5
    • /
    • pp.676-683
    • /
    • 2007
  • A non-invasive respiratory gated radiotherapy system like those based on external anatomic motion gives better comfortableness to patients than invasive system on treatment. However, higher correlation between the external and internal anatomic motion is required to increase the effectiveness of non-invasive respiratory gated radiotherapy. Both of invasive and non-invasive methods need to track the internal anatomy with the higher precision and rapid response. Especially, the non-invasive method has more difficulty to track the target position successively because of using only image processing. So we developed the system to track the motion for a non-invasive respiratory gated system to accurately find the dynamic position of internal structures such as the diaphragm and tumor. The respiratory organ motion tracking apparatus consists of an image capture board, a fluoroscopy system and a processing computer. After the image board grabs the motion of internal anatomy through the fluoroscopy system, the computer acquires the organ motion tracking data by image processing without any additional physical markers. The patients breathe freely without any forced breath control and coaching, when this experiment was performed. The developed pattern-recognition software could extract the target motion signal in real-time from the acquired fluoroscopic images. The range of mean deviations between the real and acquired target positions was measured for some sample structures in an anatomical model phantom. The mean and max deviation between the real and acquired positions were less than 1mm and 2mm respectively with the standardized movement using a moving stage and an anatomical model phantom. Under the real human body, the mean and maximum distance of the peak to trough was measured 23.5mm and 55.1mm respectively for 13 patients' diaphragm motion. The acquired respiration profile showed that human expiration period was longer than the inspiration period. The above results could be applied to respiratory-gated radiotherapy.