• Title/Summary/Keyword: Analyze Data

Search Result 19,173, Processing Time 0.041 seconds

AR Tourism Recommendation System Based on Character-Based Tourism Preference Using Big Data

  • Kim, In-Seon;Jeong, Chi-Seo;Jung, Tae-Won;Kang, Jin-Kyu;Jung, Kye-Dong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • The development of the fourth industry has enabled users to quickly share a lot of data online. We can analyze big data on information about tourist attractions and users' experiences and opinions using artificial intelligence. It can also analyze the association between characteristics of users and types of tourism. This paper analyzes individual characteristics, recommends customized tourist sites and proposes a system to provide the sacred texts of recommended tourist sites as AR services. The system uses machine learning to analyze the relationship between personality type and tourism type preference. Based on this, it recommends tourist attractions according to the gender and personality types of users. When the user finishes selecting a tourist destination from the recommendation list, it visualizes the information of the selected tourist destination with AR.

Web-based DNA Microarray Data Analysis Tool

  • Ryu, Ki-Hyun;Park, Hee-Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1161-1167
    • /
    • 2006
  • Since microarray data structures are various and complicative, the data are generally stored in databases for approaching to and controlling the data effectively. But we have some difficulties to analyze and control the data when the data are stored in the several database management systems. The existing analysis tools for DNA microarray data have many difficult problems by complicated instructions, and dependency on data types and operating system, and high cost, etc. In this paper, we design and implement the web-based analysis tool for obtaining to useful information from DNA microarray data. When we use this tool, we can analyze effectively DNA microarray data without special knowledge and education for data types and analytical methods.

  • PDF

Analysis of problems caused by Big Data's private information handling (빅데이터 개인정보 취급에 따른 문제점 분석)

  • Choi, Hee Sik;Cho, Yang Hyun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.1
    • /
    • pp.89-97
    • /
    • 2014
  • Recently, spread of Smartphones caused activation of mobile services, because of that Big Data such as clouding service able to proceed with large amount of data which are hard to collect, save, search and analyze. Many companies collected variety of private and personal information without users' agreement for their business strategy and marketing. This situation raised social issues. As companies use Big Data, numbers of damage cases are growing. In this Thesis, when Big Data process, methods of analyze and research of data are very important. This thesis will suggest that choices of security levels and algorithms are important for security of private informations. To use Big Data, it has to encrypt the personal data to emphasize the importance of security level and selection of algorithm. Thesis will also suggest that research of utilization of Big Data and protection of private informations and making guidelines for users are require for security of private information and activation of Big Data industries.

Trends of Plant Image Processing Technology (이미지 기반의 식물 인식 기술 동향)

  • Yoon, Y.C.;Sang, J.H.;Park, S.M.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.4
    • /
    • pp.54-60
    • /
    • 2018
  • In this paper, we analyze the trends of deep-learning based plant data processing technologies. In recent years, the deep-learning technology has been widely applied to various AI tasks, such as vision (image classification, image segmentation, and so on) and natural language processing because it shows a higher performance on such tasks. The deep-leaning method is also applied to plant data processing tasks and shows a significant performance. We analyze and show how the deep-learning method is applied to plant data processing tasks and related industries.

Basic research to analyze construction policy and industrial issues based on Big Data (빅데이터 기반의 건설기술용역분야 정책 및 산업이슈 분석 기초연구)

  • Han, Jae-Goo;Lee, Kyo-Sun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.290-291
    • /
    • 2018
  • The purpose of this study is to analyze the trends and changes in the environment of construction technology and industry through big data analysis and to draw out implications. Based on this research, this study will be used as a basic research for the vision of industrial competitiveness in the field of construction engineering technology and the policy task.

  • PDF

THE APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO LANDSLIDE SUSCEPTIBILITY MAPPING AT JANGHUNG, KOREA

  • LEE SARO;LEE MOUNG-JIN;WON JOONG-SUN
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.294-297
    • /
    • 2004
  • The purpose of this study was to develop landslide susceptibility analysis techniques using artificial neural networks and then to apply these to the selected study area of Janghung in Korea. We aimed to verify the effect of data selection on training sites. Landslide locations were identified from interpretation of satellite images and field survey data, and a spatial database of the topography, soil, forest, and land use was constructed. Thirteen landslide-related factors were extracted from the spatial database. Using these factors, landslide susceptibility was analyzed using an artificial neural network. The weights of each factor were determined by the back-propagation training method. Five different training datasets were applied to analyze and verify the effect of training. Then, the landslide susceptibility indices were calculated using the trained back-propagation weights and susceptibility maps were constructed from Geographic Information System (GIS) data for the five cases. The results of the landslide susceptibility maps were verified and compared using landslide location data. GIS data were used to efficiently analyze the large volume of data, and the artificial neural network proved to be an effective tool to analyze landslide susceptibility.

  • PDF

MINERAL POTENTIAL MAPPING AND VERIFICATION OF LIMESTONE DEPOSITS USING GIS AND ARTIFICIAL NEURAL NETWORK IN THE GANGREUNG AREA, KOREA

  • Oh, Hyun-Joo;Lee, Sa-Ro
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.710-712
    • /
    • 2006
  • The aim of this study was to analyze limestone deposits potential using an artificial neural network and a Geographic Information System (GIS) environment to identify areas that have not been subjected to the same degree of exploration. For this, a variety of spatial geological data were compiled, evaluated and integrated to produce a map of potential deposits in the Gangreung area, Korea. A spatial database considering deposit, topographic, geologic, geophysical and geochemical data was constructed for the study area using a GIS. The factors relating to 44 limestone deposits were the geological data, geochemical data and geophysical data. These factors were used with an artificial neural network to analyze mineral potential. Each factor’s weight was determined by the back-propagation training method. Training area was applied to analyze and verify the effect of training. Then the mineral deposit potential indices were calculated using the trained back-propagation weights, and potential map was constructed from GIS data. The mineral potential map was then verified by comparison with the known mineral deposit areas. The verification result gave accuracy of 87.31% for training area.

  • PDF

An Analysis for the Student's Needs of non-face-to-face based Software Lecture in General Education using Text Mining (텍스트 마이닝을 이용한 비대면 소프트웨어 교양과목의 요구사항 분석)

  • Jeong, Hwa-Young
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.3
    • /
    • pp.105-111
    • /
    • 2022
  • Multiple-choice survey types have been mainly performed to analyze students' needs for online classes. However, in order to analyze the exact needs of students, unstructured data analysis by answer for essay question is required. Big data is applied in various fields because it is possible to analyze unstructured data. This study aims to investigate and analyze what students want subjects or topics for software lecture in general education that process on non-face-to-face online teaching methods. As for the experimental method, keyword analysis and association analysis of big data were performed with unstructured data by giving a subjective questionnaire to students. By the result, we are able to know the keyword what the students want for software lecture, so it will be an important data for planning and designing software lecture of liberal arts in the future as students can grasp the topics they want to learn.

Development of the Historical Data Management System for using the Cost Estimate System (실적공사비 적산 시스템 운영을 위한 실적 자료 관리 시스템 개발(구조 및 재료 \circled1))

  • 정연철;배연정;윤성수;이정재
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.239-245
    • /
    • 2000
  • This study is aimed to develop the historical data management system named "ACON"(Actual COst Network system) which can be used for collecting, analysis and modification of the historical data. ACON_Local is used for collecting the historical data at each spot place. It redueces the work potential of managers, spending time and cost. ACON_Analysis is to analyze the collection , modifies the data′s error and updates the historical database. ACON_Network is developed to transfer data from ACON to Web server or opposites. The proposed model, ACON, provide the easy way for the cost estimate system, "HiCOMS" to collect, analyze and modify the historical cost evaluated data, which is used to compose the historical data base.

  • PDF

A Bayesian model for two-way contingency tables with nonignorable nonresponse from small areas

  • Woo, Namkyo;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.1
    • /
    • pp.245-254
    • /
    • 2016
  • Many surveys provide categorical data and there may be one or more missing categories. We describe a nonignorable nonresponse model for the analysis of two-way contingency tables from small areas. There are both item and unit nonresponse. One approach to analyze these data is to construct several tables corresponding to missing categories. We describe a hierarchical Bayesian model to analyze two-way categorical data from different areas. This allows a "borrowing of strength" of the data from larger areas to improve the reliability in the estimates of the model parameters corresponding to the small areas. Also we use a nonignorable nonresponse model with Bayesian uncertainty analysis by placing priors in nonidentifiable parameters instead of a sensitivity analysis for nonidentifiable parameters. We use the griddy Gibbs sampler to fit our models and compute DIC and BPP for model diagnostics. We illustrate our method using data from NHANES III data on thirteen states to obtain the finite population proportions.