• Title/Summary/Keyword: Analytical results

Search Result 8,824, Processing Time 0.035 seconds

Thermal response of porous media cooled by a forced convective flow (강제대류에 의해 냉각되는 다공물질의 열응답 특성)

  • 백진욱;강병하;현재민
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.600-609
    • /
    • 1998
  • The experimental investigation of thermal response characteristics by the air flow through the porous media has been carried out. The packed spheres of steel or glass were considered as the porous media in the present study. Temperature distributions of the fluid in the porous media as well as pressure drops through the porous media were measured. The transient temperature variations in the porous media are compared favorably with the analytical results in the high Reynolds number ranges. However, in the low Reynolds number ranges, the experimental data deviate from the analytical results, due to the dominant heat conduction penetration to the upstream direction, which is not considered in the analytical model. The cool-down response of porous media is found to be dependent upon the specific dimensionless time considering the material property and air velocity. The heat discharge process is recommended to be operated until a certain time, considering the cost efficiency.

  • PDF

Analytical Model of Breakdown Voltages for 6H-SiC $p^{+}n$ Junction (6H-SiC $p^{+}n$ 접합의 항복 전압을 위한 해석적 모형)

  • Jeong, Yong-Seong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.6
    • /
    • pp.398-403
    • /
    • 2001
  • In this paper, effective ionization coefficient for 6H-SiC is determined. Analytical formulas for the parallel plane breakdown voltage of the 6H-SiC p+n junction are derived by employing the ionization coefficients. The analytical breakdown voltages show good agreement with the numerical results of Dmitriev's[3]and the experimental results of Cree Research[9]over the doping range from 10$^{15}$ cm$^{-3}$ to 10$^{18}$ cm$^{-3}$.

  • PDF

A Simple and Analytical Design Approach for Input Power Matched On-chip CMOS LNA

  • Kim, Tae-Wook;Lee, Kwyro
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.1
    • /
    • pp.19-29
    • /
    • 2002
  • A simple and analytical design approach for input power matched CMOS RF LNA circuits and their scaling for lower power consumption, is introduced. In spite of the simplicity of our expressions, it gives excellent agreement with numerical simulation results using commercial CAD tools for several circuit examples performed at 2.4GHz using $0.18\mu\textrm{m}$ CMOS technology. These simple and analytical results are extremely useful in that they can provide enough insights not only for designing any CMOS LNA circuits, but also for characterizing and diagnosing them whether being prototyped or manufactured.

Analytical Investigation on Strengthening Details of RC Beams Strengthened with NSMR (NSM보강 RC보의 보강 상세에 대한 해석)

  • Kang, Jae-Yoon;Park, Young-Hwan;Park, Jong-Sup;You, Young-Jun;Jung, Woo-Tai
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.195-198
    • /
    • 2005
  • To investigate the strengthening efficiency of the Near Surface Mounted Reinforcement (NSMR) technique analytically, a structural model for the finite element method (FEM) able to simulate accurately the experimental results was determined. Applying the finite element model, parametric analysis was performed considering the groove depth and spacing of CFRP laminates. Analytical study on the groove depth revealed the existence of a critical depth beyond which the increase of the ultimate load becomes imperceptible. Analytical results regard to the spacing of the CFRP laminates showed that comparatively smooth fluctuations of the ultimate load were produced by the variation of the spacing and the presence of an optimal spacing range for which relatively better strengthening efficiency can be obtained. Particularly, a spacing preventing the interference between adjacent CFRP laminates and the influence of the concrete cover at the edges as well as allowing the CFRP laminatesto behave independently was derived.

  • PDF

An Analytical Investigation of a Hydraulic Clutch System of Powershift Transmission (파워시프트 변속기 유압클러치시스템의 해석적 연구)

  • Lee, J.C.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • This study presents an analytical model of hydraulic clutch system of a power shift transmission to analyze pressure modulation characteristics. A typical hydraulic clutch system was modeled by using AMESim in which the parameters of major components were measured for simulation. Test apparatus was established using the components of power shift and power shuttle clutches with instrumental equipment. The results of simulation and experiment were so close that the proposed analytical model in this study was validated. However the cylinder model analogized clutch dynamics need to be improved in future study. The effects of parameters of orifice diameter, accumulator stroke and oil temperature on pressure modulation were analyzed respectively. The results of parameter sensitivity analysis show that modulation time and set pressure can be easily adjusted by changing parameter values. It is also found that the hydraulic clutch system used in this study is so susceptible to oil temperature that cooling equipment is necessary.

  • PDF

Cracking Behavior of RC Panels under Biaxial Tension (이축인장을 받는 철근콘크리트 패널의 균열 거동)

  • 곽효경;김도연
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.599-606
    • /
    • 2003
  • An analytical model which can simulate the post-cracking nonlinear behavior of reinforced concrete (RC) members such as bars and panels subjected to uniaxial and biaxial tensile stresses is presented. The proposed model includes the description of biaxial failure criteria and the average stress-strain relation of reinforcing steel. Based on strain distribution functions of steel and concrete after cracking, average response of an embedded reinforcement, a criterion to consider the tension-stiffening effect is proposed using the concept of average stresses and strains. The validity of the introduced model is established by comparing the analytical predictions for reinforced concrete tension members with results from experimental studies. Finally, correlation studies between analytical results and experimental data from biaxial tension test are conducted with the objective to establish the validity of the proposed models and identify the significance of various effects on the response of biaxially loaded reinforced concrete panels.

  • PDF

Seismic shear behavior of rectangular hollow bridge columns

  • Mo, Y.L.;Jeng, Chyuan-Hwan;Perng, S.F.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.4
    • /
    • pp.429-448
    • /
    • 2001
  • An analytical model incorporating bending and shear behavior is presented to predict the lateral loading characteristic for rectangular hollow columns. The moment-curvature relationship for the rectangular hollow sections of a column is firstly determined. Then the nonlinear lateral load-displacement relationship for the hollow column can be obtained accordingly. In this model, thirteen constitutive laws for confined concrete and five approaches to estimate the shear capacity are used. A series of tests on 12 model hollow columns aimed at the seismic shear behavior are reported, and the test data are compared to the analytical results. It is found that the analytical model reflects the experimental results rather closely.

Analytical Models of Instruction Fetch on Superscalar Processors

  • Kim, Sun-Mo;Jung, Jin-Ha;Park, Sang-Bang
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.619-622
    • /
    • 2000
  • This research presents an analytical model to predict the instruction fetch rate on superscalar Processors. The proposed model is also able to analyze the performance relationship between cache miss and branch prediction miss. The proposed model takes into account various kind of architectural parameters such as branch instruction probability, cache miss rate, branch prediction miss rate, and etc.. To prove the correctness of the proposed model, we performed extensive simulations and compared the results with those of the analytical models. Simulation results showed that the pro-posed model can estimate the instruction fetch rate accurately within 10% error in most cases. The model is also able to show the effects of the cache miss and branch prediction miss on the performance of instruction fetch rate, which can provide an valuable information in designing a balanced system.

  • PDF

Equivalent moment of inertia of a truss bridge with steel-concrete composite deck

  • Siekierski, Wojciech
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.801-813
    • /
    • 2015
  • Flexural stiffness of bridge spans has become even more important parameter since Eurocode 1 introduced for railway bridges the serviceability limit state of resonance. For simply supported bridge spans it relies, in general, on accurate assessment of span moment of inertia that governs span flexural stiffness. The paper presents three methods of estimation of the equivalent moment of inertia for such spans: experimental, analytical and numerical. Test loading of the twin truss bridge spans and test results are presented. Recorded displacements and the method of least squares are used to find an "experimental" moment of inertia. Then it is computed according to the analytical method that accounts for joint action of truss girders and composite deck as well as limited span shear stiffness provided by diagonal bracing. Finally a 3D model of finite element method is created to assess the moment of inertia. Discussion of results is given. The comparative analysis proves efficiency of the analytical method.

Analytical solution for undrained plane strain expansion of a cylindrical cavity in modified cam clay

  • Silvestri, Vincenzo;Abou-Samra, Ghassan
    • Geomechanics and Engineering
    • /
    • v.4 no.1
    • /
    • pp.19-37
    • /
    • 2012
  • This paper presents the results of analytical and numerical analyses of the effects of performing a pressuremeter test or driving a pile in clay. The geometry of the problem has been simplified by the assumptions of plane strain and axial symmetry. Pressuremeter testing or installation of driven piles has been modelled as an undrained expansion of a cylindrical cavity. Stresses, pore water pressures, and deformations are found by assuming that the clay behaves like normally consolidated modified Cam clay. Closed-form solutions are obtained which allow the determination of the principal effective stresses and the strains around the cavity. The analysis which indicates that the intermediate principal stress at critical state is not equal to the mean of the other two principal stresses, except when the clay is initially isotropically consolidated, also permits finding the limit expansion and excess pore water pressures by means of the Almansi finite strain approach. Results are compared with published data which were determined using finite element and finite difference methods.