• Title/Summary/Keyword: Analytical precision

Search Result 814, Processing Time 0.032 seconds

Mechanics of Diamond Blade Sawing (다이아몬드 블레이드를 사용한 절단가공이 절단저항력 해석)

  • Seo, Young-Il;Choi, Hwan;Lee, Jong-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.1
    • /
    • pp.84-90
    • /
    • 1996
  • A theoretical analysis is presented on the mechanics of diamond blade sawing. The normal and tangential components of cutting force are calculated. Experimental results are also presented, which show the effects of cutting variables such as cutting speed, feed speed, cutting area, and concentration of diamond blade on the cutting forces. The experimental results are found to be in good agreement with those predicted by the analytical calculation.

  • PDF

2 Dimensional Modeling of Centerless Grinding -Interference Phenomena-

  • Kim, Kang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.4
    • /
    • pp.32-38
    • /
    • 2003
  • An analytical model of the interference phenomena in the centerless grinding process is developed to investigate their effects on the roundness profile of a centerless ground workpiece. In this work, the regulating wheel and work-rest blade interferences are modeled as a single point contact. The grinding wheel interference is modeled as multiple points contact because material removal is determined by the duration of contact. The computer simulation results show good agreement with the experimental data. From this work, the existence and effects of the interference phenomena in the centerless grinding process are found.

Evaluation of Composite Material Damage (복합재료의 내부손상 평가)

  • 이재준;김태우;김찬묵
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.689-692
    • /
    • 2002
  • Composite materials, when damaged under thermal or mechanical loadings, show property changes. Among many mechanical properties of composite materials. the stiffness tend to be reduced due to micro-cracking, debonding, or delamination caused by external loadings. This research presents results regarding the detecting technique of internal damages within composite that experienced low-velocity impacts. Post-damage evaluations were made experimentally using flexural and compression loadings. Preliminary finite element analysis was made and compared with analytical solutions. The experimental results to determine the degree of damage will be compared with finite element results.

  • PDF

Engineered Surface Characterization by Space Series Function (공간 계열 함수를 이용한 가공 표면의 특성 연구)

  • Hong, Minsung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.120-128
    • /
    • 1996
  • An attempt is made to characterize and synthesize engineered surfaces. The proposed method is not only an analytical tool to characterize but also to generate/synthesize three-dimensional surfaces. The developed method expresses important engineered surface characteristics such as the autocorrelation or power spectrum density functions in terms of the two-dimensional autoregressive coefficients.

  • PDF

Signal compensation by the light scattering of sample aerosols in ICP-AES (ICP-AES에서 에어로졸의 광산란에 의한 신호의 보정)

  • Yeon, Pyung-Hum;Pak, Yong-Nam
    • Analytical Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.223-229
    • /
    • 2012
  • Analytical signal from ICP was compensated by the light scattering of sample aerosols. Reference scattering signal was generated by a He-Ne or diode laser, monitored for the amount of aerosol producing and used for the compensation of analytical signals. The result showed that significant improvement in precision could be achieved for the short-term signal (within 1 minute) from 3.4% to 0.9% RSD in signal and 14.9% to 4.2% for the long-term (10 minutes) for Be, Pb and Co. This method is very useful not only for the pulse type but for continuous type signals especially when a nebulizer is unstable. To improve long-term precision, higher stability is required in the scattering cell and detector as well as the reduction of noise from the line between a nebulizer and plasma.

An Analytical Method of Formaldehyde in Exhaust Gases from Industrial Facilities using a HPLC under Isocratic Conditions (Isocratic 조건하에서 HPLC를 이용한 산업시설 배출가스 중 포름 알데하이드 분석)

  • Kim, Jun-Pyo;Park, Seung-Shik;Bae, Min-Suk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.616-624
    • /
    • 2018
  • In this study, a previous DNPH (2,4-dinitrophenylhydrazine) coupled with high performance liquid chromatography (HPLC) method to measure the concentration of formaldehyde in ambient and source environments has been improved. To improve the disadvantage of the previous HPLC method, an appropriate composition ratio of mobile phase (water: acetonitrile (ACN)) was determined and an isocratic analysis was conducted. Furthermore, limit of detection (LOD), limit of quantitation(LOQ), accuracy, and precision were investigated to verify the reliability of the analytical conditions determined. Finally, samples of exhaust gases from five different industrial facilities were applied to HPLC analytial method proposed to determine their formaldehyde concentrations. The appropriate composition ratio of the mobile phase under the isocratic condition was a mixture of water(40%) and ACN(60%). As the volume fraction of the organic solvent ACN increases, retention time of the formaldehyde peak was reduced. Detection time of formaldehyde peak determined using the proposed isocratic method was reduced from 7 minutes(previous HPLC method) to approximately 3 minutes. LOD, LOQ, accuracy, and precision of the formaldehyde determined using standard solutions were 0.787 ppm, 2.507 ppm, 93.1%, and 0.33%, respectively, all of which are within their recommended ranges. Average concentrations of the formaldehyde in five exhaust gases ranged from 0.054 ppm to 1.159 ppm. The lowest concentration (0.054 ppm) was found at samples from waste gas incinerator in a bisphenol-A manufacturing plant. The highest was observed at samples from the absorption process in manufacturing facilities of chemicals including formaldehyde and hexamine. The analytical time of the formaldehyde in ambient air can be shortened by using the isocratic analytical method under appropriate mobile phase conditions.

Spectrophotometric Determination of Nizatidine and Ranitidine Through Charge Transfer Complex Formation

  • Walash, M.;Din, M.-Sharaf-EI;Metwalli, M.E.S.;RedaShabana, M.
    • Archives of Pharmacal Research
    • /
    • v.27 no.7
    • /
    • pp.720-726
    • /
    • 2004
  • Two Spectrophotometric procedures are presented for the determination of two commonly used H2-receptor antagonists, nizatidine (I) and ranitidine hydrochloride (II). The methods are based mainly on charge transfer complexation reaction of these drugs with either ${\rho}-chloranilic$ acid (${\rho}-CA$) or 2, 3 dichloro-5, 6-dicyanoquinone (DDQ). The produced colored products are quantified spectrophotometrically at 515 and 467 nm in chloranilic acid and 000 methods, respectively. The molar ratios for the reaction products and the optimum assay conditions were studied. The methods determine the cited drugs in concentration ranges of 20-200 and $20-160\;\mu\textrm{g}/mL$ for nizatidine and ranges of 20-240 and $20-140\;\mu\textrm{g}/mL$ for ranitidine with chloranilic acid and DDQ methods, respectively. A more detailed investigation of the complexes formed was made with respect to their composition, association constant, molar absorptivity and free energy change. The proposed procedures were successfully utilized in the determination of the drugs in pharmaceutical preparations. The standard addition method was applied by adding nizatidine and ranitidine to the previously analyzed tablets or capsules. The recovery of each drug was calculated by comparing the concentration obtained from the spiked mixtures with those of the pure drug. The results of analysis of commercial tablets and the recovery study (standard addition method) of the cited drugs suggested that there is no interference from any excipients, which are present in tablets or capsules. Statistical comparison of the results was performed with regard to accuracy and precision using student's t-test and F-ratio at 95% confidence level. There is no significant difference between the reported and proposed methods with regard to accuracy and precision.

Precision Hard Turning with Cryogenic Cooling (액화질소를 이용한 고정도 하드 터닝)

  • 박영우;김기수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.1048-1051
    • /
    • 2001
  • This paper presents an analytical and experimental study of a cryogenic machining for precision hard turning. A cryogenic circulation system is designed and mounted on the top of the tool insert. The machining process used is facing operation on a CNC turning center with dry and cryogenic conditions. The tool temperature and cutting forces are measured by the K-type thermocouple and by a three-component Kistler dynamometer, respectively. Both data are fed into the data acquisition program through an A/D card. Surface roughness and form accuracy of the machined surface are measured by WYKO NT2000. It is also found that surface roughness and form accuracy with cryogenic cooling are better than those with no coolant.

  • PDF

Determination of Trace Elements in Airborne Particulates by Instrumental Neutron Activation Analysis (중성자 방사화분석법을 이용한 대기분진시료의 정량)

  • Chung, Yong-Sam;Chung, Young-Ju;Jeong, Eui-Sik;Cho, Seung-Yeon
    • Nuclear Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.234-247
    • /
    • 1995
  • Trace elements in airborne particulates were analyzed by instrumental neutron activation analysis (INAA) under the optimum analytical condition. Neutron irradiation for sample was done at the irradiation hole(neutron flux 1$\times$10$^{13}$ n/$\textrm{cm}^2$.s) of TRIGA MARK-III research reactor in the Korea Atomic Energy Research Institute. For the verification of the analytical method, NIST SRM-1648 and NIES CRM No.8 ore chosen and analyzed. The accuracy and precision of the analysis of 40 and 24 trace elements in the samples were compared with the certified and reported values, respectively. The analytical method was found to be reliable enough when the analytical data of NIES sample were compared with those of different counties. In the analytical result of two or both of standard reference materials, relative standard deviation wes within the 15% except a few elements and the relative error was within the 10%. We used this method to analyze 30 trace elements in airborne particulates collected with the high volume air sampler(PM-10) at too different locations and also confirmed the possibility to use this method as a routine monitoring tool to find out environmental pollution sources.

  • PDF

Development and validation of an analytical method to quantify baphicacanthin A by LC-MS/MS and its application to pharmacokinetic studies in mice

  • Jeon, So Yeon;Kim, San;Park, Jin-Hyang;Song, Im-Sook;Han, Young Taek;Choi, Min-Koo
    • Analytical Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.60-68
    • /
    • 2022
  • In this study, we developed and validated a sensitive analytical method to quantify baphicacanthin A in mouse plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The standard calibration curves for baphicacanthin A ranged from 0.5 to 200 ng/mL and were linear, with an r2 of 0.985. The inter- and intra-day accuracy and precision and the stability fell within the acceptance criteria. Besides, we investigated the pharmacokinetics of baphicacanthin A following its intravenous (5 mg/kg) and oral administration (30 mg/kg). Intravenously injected baphicacanthin A showed biphasic elimination kinetics with high clearance and volume of distribution values. Furthermore, baphicacanthin A showed a rapid absorption but low aqueous solubility (182.51±0.20 mg/mL), resulting in low plasma concentrations and low oral bioavailability (2.49 %). Thus, we successfully documented the pharmacokinetic properties of baphicacanthin A using this newly developed sensitive LC-MS/MS quantification method, which could be used in future lead optimization and biopharmaceutic studies.