• 제목/요약/키워드: Analytical mode

검색결과 935건 처리시간 0.027초

12m × 3m 스틸 모듈러 시스템의 보-중간기둥 접합부 구조성능 (Structural Performance of Beam-Middle Column Connection of 12m × 3m Steel Modular System)

  • 심성철;이상현;조봉호;우성식;최문식
    • 한국강구조학회 논문집
    • /
    • 제20권6호
    • /
    • pp.793-805
    • /
    • 2008
  • 최근 들어 군막사 및 학교건축물의 증축 등 공사기간의 최소화가 가장 중요시 되는 건설프로젝트에 모듈러 시스템이 적용되고 있다. 기존 모듈러 시스템의 표준모듈은 ${6m\times3m}$로 모듈간 접합부에 기둥이 자주 중복되어 부재수와 벽체두께가 증가한다는 문제점을 가지고 있다. 본 연구에서는 이러한 문제점을 해결하기 위하여 ${12m\times3m}$ 모듈을 제안하였다. 이 모듈을 실현하기 위해 필수적인 다양한 중간기둥-보 접합상세를 제안하였으며, 실험과 해석을 통해 기둥-보 접합부의 최대하중과 파괴모드를 평가하였다. 해석 및 실험결과는 유한요소해석을 통해 비교적 정확히 접합부의 최대하중과 파괴모드를 예측할 수 있음을 보여준다. 제안된 상세 중 일부는 기둥의 설계하중을 상회하는 강도를 보유하고 있어, ${12m\times3m}$모듈의 보-중간기둥 접합상세로 사용할 수 있을 것으로 판단된다.

영구자석을 이용한 전단모드 MR 댐퍼 설계 및 해석 (Design and Analysis of Magneto-Rheological Damper Using Permanent Magnet)

  • 김완호;칼루반 수레쉬;박진하;최상민;박춘용;강제원;최승복
    • 한국소음진동공학회논문집
    • /
    • 제26권4호
    • /
    • pp.443-448
    • /
    • 2016
  • A novel Permanent Magnet based Magneto Rheological (PM-MR) damper is proposed in this paper. The principle of proposed MR damper is achieved by designing a linearly varying magnetization area with-respect to the movable permanent magnetic based piston setup. Nowadays, commercially available MR damper uses electromagnetic coils for generating the variable magnetic fields corresponding to the variable damping force. The amount of magnetic field produced by the electromagnetic coils are depends on the biasing current of voltage source. The key enabling concept of the proposed MR damper is to replace the electromagnetic coils and the voltage sources by utilizing the variable area based permanent magnetic piston setup. The proposed unique design structure of PM-MR damper has an increasing shear mode damping force with the piston movement in both jounce and rebound motion. In this research, analytical model of the proposed structure is derived and the structural design of proposed concept is verified using numerical CAD tool. As a result, the damping force is increase when piston movement in both jounce and rebound motion.

A comparative study for beams on elastic foundation models to analysis of mode-I delamination in DCB specimens

  • Shokrieh, Mahmood Mehrdad;Heidari-Rarani, Mohammad
    • Structural Engineering and Mechanics
    • /
    • 제37권2호
    • /
    • pp.149-162
    • /
    • 2011
  • The aim of this research is a comprehensive review and evaluation of beam theories resting on elastic foundations that used to model mode-I delamination in multidirectional laminated composite by DCB specimen. A compliance based approach is used to calculate critical strain energy release rate (SERR). Two well-known beam theories, i.e. Euler-Bernoulli (EB) and Timoshenko beams (TB), on Winkler and Pasternak elastic foundations (WEF and PEF) are considered. In each case, a closed-form solution is presented for compliance versus crack length, effective material properties and geometrical dimensions. Effective flexural modulus ($E_{fx}$) and out-of-plane extensional stiffness ($E_z$) are used in all models instead of transversely isotropic assumption in composite laminates. Eventually, the analytical solutions are compared with experimental results available in the literature for unidirectional ($[0^{\circ}]_6$) and antisymmetric angle-ply ($[{\pm}30^{\circ}]_5$, and $[{\pm}45^{\circ}]_5$) lay-ups. TB on WEF is a simple model that predicts more accurate results for compliance and SERR in unidirectional laminates in comparison to other models. TB on PEF, in accordance with Williams (1989) assumptions, is too stiff for unidirectional DCB specimens, whereas in angle-ply DCB specimens it gives more reliable results. That it shows the effects of transverse shear deformation and root rotation on SERR value in composite DCB specimens.

유한요소해석에 의한 장지간 바닥판의 정적파괴형태 예측 (Prediction of Failure Mode Under Static Loading in Long Span Bridge Deck Slabs by FEM)

  • 박우진;황훈희
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권4호
    • /
    • pp.52-59
    • /
    • 2012
  • 횡방향으로 프리스트레스가 도입된 장지간 PSC 바닥판의 정적 거동을 예측하기 위한 유한요소해석 모델을 구성하고, 해석결과를 선행연구에 의한 실험결과와 비교하였다. 유한요소해석에 의하여 서로 다른 콘크리트 강도와 프리스트레스 크기를 변수로 갖는 각각의 실험체에 대한 하중-처짐 관계 곡선을 비교적 근접하게 추정할 수 있었다. 또한, 변형률 분포와 변수에 따른 극한강도 변화로부터 펀칭전단에 의한 파괴형태와 손상범위 등을 간접적으로 예측할 수 있었다. 이 연구에서 활용된 유한요소해석 모델은 펀칭전단파괴에 의한 펀칭콘의 분리를 사실적으로 재현하기 위한 목적이 아니며, 실험연구를 위한 보조적 수단으로서 정적거동예측과 실험결과의 보완 등에 효과적으로 활용될 수 있을 것으로 판단된다.

High Speed Separation of PFCs in Human Serum by C18-Monolithic Column Liquid Chromatography-Tandem Mass Spectrometry

  • Lee, Won-Woong;Lee, Sun-Young;Yu, Se Mi;Hong, Jongki
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3727-3734
    • /
    • 2012
  • An analytical method has been developed for the rapid determination of perfluorinated compounds (PFCs) in human serum samples. The extraction and purification of PFCs from human serum were performed by the modified method of previous report. Ten PFCs were rapidly separated within 3.3 min by C18-monolithic column liquid chromatography (LC) and detected by electrospray ionization (ESI) tandem mass spectrometry (MS/MS) in negative ion mode. The runtime of PFCs on monolithic column LC was up to 4-fold faster than that on conventional column LC. The effect of triethylamine (TEA) to the mobile phase has investigated on the overall MS detection sensitivity of PFCs in ESI ionization. Quantification was performed by LC-MS/MS in multiple-ion reaction monitoring (MRM) mode, using $^{13}C$-labeled internal standards. Method validation was performed to determine recovery, linearity, precision, and limits of quantification, followed by, the analysis of a standard reference material (SRM 1957 from NIST). The overall recoveries ranged between 81.5 and 106.3% with RSDs of 3.4 to 16.2% for the entire procedure. The calibration range extended from 0.33 to 50 $ng\;mL^{-1}$, with a correlation coefficient ($R^2$) greater than 0.995 and the limits of quantification with 0.08 to 0.46 $ng\;mL^{-1}$. This approach can be used for rapid and sensitive quantitative analysis of 10 PFCs in human serum with high performance and accuracy.

Rapid Determination of Imatinib in Human Plasma by Liquid Chromatography-Tandem Mass Spectrometry: Application to a Pharmacokinetic Study

  • Yang, Jeong Soo;Cho, Eun Gi;Huh, Wooseong;Ko, Jae-Wook;Jung, Jin Ah;Lee, Soo-Youn
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권8호
    • /
    • pp.2425-2430
    • /
    • 2013
  • A simple, fast and robust analytical method was developed to determine imatinib in human plasma using liquid chromatography-tandem mass spectrometry with electrospray ionization in the positive ion mode. Imatinib and labeled internal standard were extracted from plasma with a simple protein precipitation. The chromatographic separation was performed using an isocratic elution of mobile phase involving 5.0 mM ammonium formate in water-5.0 mM ammonium formate in methanol (30:70, v/v) over 3.0 min on reversed-stationary phase. The detection was performed using a triple-quadrupole tandem mass spectrometer in multiple-reaction monitoring mode. The developed method was validated with lower limit of quantification of 10 ng/mL. The calibration curve was linear over 10-2000 ng/mL ($R^2$ > 0.99). The method validation parameters met the acceptance criteria. The spiked samples and standard solutions were stable under conditions for storage and handling. The reliable method was successfully applied to real sample analyses and thus a pharmacokinetic study in 27 healthy Korean male volunteers.

전단철근이 없는 I형 휨보강 UHPCC 보의 거동해석 (Analysis of the Reinforced I section UHPCC (Ulrea High Performance Cementitous Composites) beam without stirrup)

  • 김성욱;한상묵;강수태;공정식;강준형;전상은
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.409-412
    • /
    • 2004
  • Over last decade extensive researches have been undertaken on the strength behaviour of Fiber Reinforced Concrete(FRC) structures. But the use of Ultra-High Strength Steel Fiber Cementitious Concrete Composites is in its infancy and there is a few experiments, analysis method and design criteria on the structural elements constructed with this new generation material which compressive strength is over 150 MPa and characteristic behaviour on the failure status is ductile. The objective of this paper is to investigate and analyze the behaviour of reinforced rectangular structural members constructed with ultra high performance cementitious composites (UHPCC). This material is known as reactive powder concrete (RPC) mixed with domestic materials and its compressive strength is over 150MP. The variables of test specimens were shear span ratio, reinforcement ratio and fiber quantity. Even if there were no shear stirrups in test specimens, most influential variable to determine the failure mode between shear and flexural action was proved to be shear span ratio. The characteristics of ultra high-strength concrete is basically brittle, but due to the steel fiber reinforcement behaviour of this structure member became ductile after the peak load. As a result of the test, the stress block of compressive zone could be defined. The proposed analytical calculation of internal force capacity based by plastic analysis gave a good prediction for the shear and flexural strength of specimens. The numerical verification of the finite element model which constitutive law developed for Mode I fracture of fiber reinforced concrete correctly captured the overall behaviour of the specimens tested.

  • PDF

Analytical study on free vertical and torsional vibrations of two- and three-pylon suspension bridges via d'Alembert's principle

  • Zhang, Wen-ming;Wang, Zhi-wei;Zhang, Hao-qing;Lu, Xiao-fan;Liu, Zhao
    • Structural Engineering and Mechanics
    • /
    • 제76권3호
    • /
    • pp.293-310
    • /
    • 2020
  • This study derives the differential equations of free vertical bending and torsional vibrations for two- and three-pylon suspension bridges using d'Alembert's principle. The respective algorithms for natural vibration frequency and vibration mode are established through the separation of variables. In the case of the three-pylon suspension bridge, the effect of the along-bridge bending vibration of the middle pylon on the vertical bending vibration of the entire bridge is considered. The impact of torsional vibration of the middle pylon about the vertical axis on the torsional vibration of the entire bridge is also analyzed in detail. The feasibility of the proposed method is verified by two engineering examples. A comparative analysis of the results obtained via the proposed and more intricate finite element methods confirmed the former feasibility. Finally, the middle pylon stiffness effect on the vibration frequency of the three-pylon suspension bridge is discussed. It is found that the vibration frequencies of the first- and third-order vertical bending and torsional modes both increase with the middle pylon stiffness. However, the increase amplitudes of third-order bending and torsional modes are relatively small with the middle pylon stiffness increase. Moreover, the second-order bending and torsional frequencies do not change with the middle pylon stiffness.

Vibration analysis and optimization of functionally graded carbon nanotube reinforced doubly-curved shallow shells

  • Hammou, Zakia;Guezzen, Zakia;Zradni, Fatima Z.;Sereir, Zouaoui;Tounsi, Abdelouahed;Hammou, Yamna
    • Steel and Composite Structures
    • /
    • 제44권2호
    • /
    • pp.155-169
    • /
    • 2022
  • In the present paper an analytical model was developed to study the non-linear vibrations of Functionally Graded Carbon Nanotube (FG-CNT) reinforced doubly-curved shallow shells using the Multiple Scales Method (MSM). The nonlinear partial differential equations of motion are based on the FGM shallow shell hypothesis, the non-linear geometric Von-Karman relationships, and the Galerkin method to reduce the partial differential equations associated with simply supported boundary conditions. The novelty of the present model is the simultaneous prediction of the natural frequencies and their mode shapes versus different curvatures (cylindrical, spherical, conical, and plate) and the different types of FG-CNTs. In addition to combining the vibration analysis with optimization algorithms based on the genetic algorithm, a design optimization methode was developed to maximize the natural frequencies. By considering the expression of the non-dimensional frequency as an objective optimization function, a genetic algorithm program was developed by valuing the mechanical properties, the geometric properties and the FG-CNT configuration of shallow double curvature shells. The results obtained show that the curvature, the volume fraction and the types of NTC distribution have considerable effects on the variation of the Dimensionless Fundamental Linear Frequency (DFLF). The frequency response of the shallow shells of the FG-CNTRC showed two types of nonlinear hardening and softening which are strongly influenced by the change in the fundamental vibration mode. In GA optimization, the mechanical properties and geometric properties in the transverse direction, the volume fraction, and types of distribution of CNTs have a considerable effect on the fundamental frequencies of shallow double-curvature shells. Where the difference between optimized and not optimized DFLF can reach 13.26%.

방향성 주파수 응답 함수를 이용한 회전체 동역학 해석 (Rotordynamic Analysis Using a Direction Frequency Response Function)

  • 이동현;김병옥;전병찬;임형수
    • Tribology and Lubricants
    • /
    • 제39권6호
    • /
    • pp.221-227
    • /
    • 2023
  • A rotordynamic system consists of components that undergo rotational motion. These components include shafts, impellers, thrust collars, and components that support rotation, such as bearings and seals. The motion of this type of rotating system can be modeled as two-dimensional motion and, accordingly, the equation of motion for the rotordynamic system can be represented using complex coordinates. The directional frequency response function (dFRF) can be derived from this complex coordinate system and used as an effective analytical tool for rotating machinery. However, the dFRF is not widely used in the field because most previous studies and commercial software are based on real coordinate systems. The objective of the current study is to introduce the dFRF and show that it can be an effective tool in rotordynamic analysis. In this study, the normal frequency response function (nFRF) and dFRF are compared under rotordynamic analysis for isotropic and unisotropic rotors. Results show that in the nFRF, the magnitude of the response is the same for both positive and negative frequencies, and the response is similar under all modes. Consequently, the severity of the mode cannot be identified. However, in the dFRF, the forward and backward modes are clearly distinguishable in the frequency domain of the isotropic rotor, and the severity of the mode can be identified for the unisotropic rotor.