• Title/Summary/Keyword: Analytical field analysis

Search Result 860, Processing Time 0.025 seconds

Rotor Loss Analysis in Permanent Magnet High-Speed Machine Using Coupled FEM and Analytical Method

  • Jang Seok-Myeong;Cho Han-Wook;Lee Sung-Ho;Yang Hyun-Sup
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.272-276
    • /
    • 2005
  • This paper deals with the method to calculate the rotor eddy current losses of permanent magnet high-speed machines considering the effects of time/space flux harmonics. The flux harmonics caused by the slot geometry in the stator is calculated from the time variation of the magnetic field distribution obtained by the magneto-static finite element analysis and double Fast Fourier Transform. And, using the analytical approach considering the multiple flux harmonics and the Poynting vector, the rotor losses is evaluated in each rotor composite. Using this method is simple and workable for any kind of stator slot shape for rotor loss analysis.

Electromagnetic Field Analysis Of High Temperature Superconducting Cable (고온초전도 케이블의 전자계 해석)

  • 조영식;홍정표;정종만;조전욱;성기철;권영길;류강식
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.60-62
    • /
    • 2000
  • It is widely acknowledged that the value of critical current in High Temperature Superconducting (HTS) tape has a great influence on B. Therefore, when HTS cable is designed, a method to reduce the B should be considered in order to improve the capacity. This paper deals with the influence of the space between each HTS tape by using 2D analytical method. From the analysis results, it is found that the decrease of the space causes the decrease of B. Moreover, another HTS cable, which has a very small space, is analyzed by 3D analytical method and it is manufactured. The validity of these analysis results are verified by comparison with experimental results.

  • PDF

A semi-analytical FE method for the 3D bending analysis of nonhomogeneous orthotropic toroidal shells

  • Wu, Chih-Ping;Li, En
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.291-306
    • /
    • 2021
  • Based on Reissner's mixed variational theorem (RMVT), the authors develop a semi-analytical finite element (FE) method for a three-dimensional (3D) bending analysis of nonhomogeneous orthotropic, complete and incomplete toroidal shells subjected to uniformly-distributed loads. In this formulation, the toroidal shell is divided into several finite annular prisms (FAPs) with quadrilateral cross-sections, where trigonometric functions and serendipity polynomials are used to interpolate the circumferential direction and meridian-radial surface variations in the primary field variables of each individual prism, respectively. The material properties of the toroidal shell are considered to be nonhomogeneous orthotropic over the meridianradial surface, such that homogeneous isotropic toroidal shells, laminated cross-ply toroidal shells, and single- and bi-directional functionally graded toroidal shells can be included as special cases in this work. Implementation of the current FAP methods shows that their solutions converge rapidly, and the convergent FAP solutions closely agree with the 3D elasticity solutions available in the literature.

Theoretical analysis of erosion degradation and safety assessment of submarine shield tunnel segment based on ion erosion

  • Xiaohan Zhou;Yangyang Yang;Zhongping Yang;Sijin Liu;Hao Wang;Weifeng Zhou
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.599-614
    • /
    • 2024
  • To evaluate the safety status of deteriorated segments in a submarine shield tunnel during its service life, a seepage model was established based on a cross-sea shield tunnel project. This model was used to study the migration patterns of erosive ions within the shield segments. Based on these laws, the degree of deterioration of the segments was determined. Using the derived analytical solution, the internal forces within the segments were calculated. Lastly, by applying the formula for calculating safety factors, the variation trends in the safety factors of segments with different degrees of deterioration were obtained. The findings demonstrate that corrosive seawater presents the evolution characteristics of continuous seepage from the outside to the inside of the tunnel. The nearby seepage field shows locally concentrated characteristics when there is leakage at the joint, which causes the seepage field's depth and scope to significantly increase. The chlorine ion content decreases gradually with the increase of the distance from the outer surface of the tunnel. The penetration of erosion ions in the segment is facilitated by the presence of water pressure. The ion content of the entire ring segment lining structure is related in the following order: vault < haunch < springing. The difference in the segment's rate of increase in chlorine ion content decreases as service time increases. Based on the analytical solution calculation, the segment's safety factor drops more when the joint leaks than when its intact, and the change rate between the two states exhibits a general downward trend. The safety factor shows a similar change rule at different water depths and continuously decreases at the same segment position as the water depth increases. The three phases of "sudden drop-rise-stability" are represented by a "spoon-shaped" change rule on the safety factor's change curve. The issue of the poor applicability of indicators in earlier studies is resolved by the analytical solution, which only requires determining the loss degree of the segment lining's effective bearing thickness to calculate the safety factor of any cross-section of the shield tunnel. The analytical solution's computation results, however, have some safety margins and are cautious. The process of establishing the evaluation model indicates that the secondary lining made of molded concrete can also have its safety status assessed using the analytical solution. It is very important for the safe operation of the tunnel and the safety of people's property and has a wide range of applications.

Validation of analysis of urinary fluoride by ion selective electrode method (이온선택전극법에 의한 소변 중 불소 이온 분석법 검증)

  • Lee, Mi-Young;Yoo, Kye-Mook
    • Analytical Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.333-338
    • /
    • 2014
  • A simple and sensitive analytical method for fluoride in urine by ion selective electrode (ISE) method was presented. Traditional buffer for fluoride determination using ISE is acetate-based one. Researchers have pointed out some drawbacks of the buffer for fluoride ISE analysis, and some other buffers including citrate-ammonium buffer and MES buffer have been studied for accurate determination of fluoride in urine here. These buffers provided promising results in environmental field, and this author focused on overcoming the interference of co-existing aluminium. The results show that MES-CyDTA buffer gave the best recovery with accuracy of 95-97.5% and precision of 1.9-7.9% for reference sample of 1.8-7.8 mg/L fluoride in urine, with smaller amount of samples and shorter analysis time compared with the traditional method which used acetate buffer. The method was applied to field samples, and which showed urinary of $0.98{\pm}0.38mg/g$ creatinine for workers in electric cable manufacturing factory (n=15) and $0.59{\pm}0.30mg/g$ creatinine for non-exposed workers (n=12).

Bridge widening with composite steel-concrete girders: application and analysis of live load distribution

  • Yang, Yue;Zhang, Xiaoguang;Fan, Jiansheng;Bai, Yu
    • Advances in concrete construction
    • /
    • v.3 no.4
    • /
    • pp.295-316
    • /
    • 2015
  • A bridge widening technology using steel-concrete composite system was developed and is presented in this paper. The widened superstructure system consists of a newly built composite steel-concrete girder with concrete deck and steel diaphragms attached to the existing concrete girders. This method has been applied in several bridge widening projects in China, and one of those projects is presented in detail. Due to the higher stiffness-to-weight ratio and the rapid erection of composite girders, this widening method reveals benefits in both mechanical performance and construction. As only a few methods for the design of bridges with different types of girders are recommended in current design codes, a more accurate analytical method of estimating live load distribution on girder bridges was developed. In the analytical model, the effects of span length, girder pacing, diaphragms, concrete decks were considered, as well as the torsional and flexural stiffness of both composite box girders and concrete T girders. The study shows that the AASHTO LRFD specification procedures and the analytical models proposed in this paper closely approximate the live load distribution factors determined by finite element analysis. A parametric study was also conducted using the finite element method to evaluate the potential load carrying capacities of the existing concrete girders after widening.

Optimal Design of MR Damper : Analytical Method and Finite Element Method (MR 댐퍼의 최적설계 : 이론적 방법 및 유한요소 방법)

  • Ha, Sung-Hoon;Seong, Min-Sang;Heung, Quoc-Nguyen;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.581-586
    • /
    • 2009
  • This paper presents an optimal design of magnetorheological(MR) damper based on analytical methodology and finite element analysis. The proposed MR damper consists of MR valve and gas chamber. The MR valve is constrained in a specific volume and the optimization problem identifies geometric dimensions of the valve structure that maximize the pressure drop of the MR valve or damping force of the MR damper. In this work, the single-coil annular MR valve structure is considered. After describing the schematic configuration and operating principle of MR valve and damper, a quasi-static model is derived based on Bingham model of MR fluid. The magnetic circuit of the valve and damper is then analyzed by applying the Kirchoff’s law and magnetic flux conservation rule. Based on the quasi-static modeling and the magnetic circuit analysis, the optimization problem of the MR valve and damper is built. The optimal solution of the optimization problem of the MR valve structure constrained in a specific volume is then obtained and compared with the solution obtained from finite element method.

  • PDF

Optimal Design of MR Damper : Analytical Method and Finite Element Method (MR 댐퍼의 최적설계 : 이론적 방법 및 유한요소 방법)

  • Ha, Sung-Hoon;Seong, Min-Sang;Heung, Quoc-Nguyen;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.11
    • /
    • pp.1110-1118
    • /
    • 2009
  • This paper presents an optimal design of magnetorheological(MR) damper based on analytical methodology and finite element analysis. The proposed MR damper consists of MR valve and gas chamber. The MR valve is constrained in a specific volume and the optimization problem identifies geometric dimensions of the valve structure that maximize the pressure drop of the MR valve or damping force of the MR damper. In this work, the single-coil annular MR valve structure is considered. After describing the schematic configuration and operating principle of MR valve and damper, a quasi-static model is derived based on Bingham model of MR fluid. The magnetic circuit of the valve and damper is then analyzed by applying the Kirchoff' s law and magnetic flux conservation rule. Based on the quasi-static modeling and the magnetic circuit analysis, the optimization problem of the MR valve and damper is built. The optimal solution of the optimization problem of the MR valve structure constrained in a specific volume is then obtained and compared with the solution obtained from finite element method.

An Analytical and Experimental Study on the Mechanical Behavior of Excavating Turnels beneath the Roadway (공용중 도로하부의 굴착터널 해석 및 계측 연구)

  • Chung, Kuang-Mo;Bang, Myung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.99-104
    • /
    • 2012
  • A turnelling work beneath roadways or railways in use is unsafe and dangerous. A turnelling method should be analytically and experimentally studied to verify stability and safety of excavating works by construction step. The conventionally analytical method was ineffective in computational time and cost, so the new analytical method named homogenuity method, was developed and verified compared with analytical results. That method was applied to parameterly study the effect of distance of steel supports and overburdening height of soil. It showed that the homogenuity method was very practical and effective in step-by-step analysis considering construction sequences. A measuring device was set at the construction field and mechanical behavior was monitored during construction. Measuring values are larger than analytical values because impact of inserting steel pipes, lowering level of underground water and vibration of passing vehicles affected soil density during construction, but those values were within allowable limits.

3D analytical method for mat foundations considering coupled soil springs

  • Lee, Jaehwan;Jeong, Sangseom;Lee, Joon Kyu
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.845-857
    • /
    • 2015
  • The 3D numerical analysis is carried out to investigate the settlement behavior of flexible mat foundations subjected to vertical loads. Special attention is given to the improved analytical method (YS-MAT) that reflects the mat flexibility and soil spring coupling effect. The soil model captures the stiffness of the soil springs as well as the shear interaction between the soil springs. The proposed method has been validated by comparing the results with other numerical approaches and field measurements on mat foundation. Through comparative studies, the proposed analytical method was in relatively good agreement with them and capable of predicting the behavior of the mat foundations.