• Title/Summary/Keyword: Analytical Prediction

Search Result 875, Processing Time 0.022 seconds

A Study on Prediction of Cutting Temperature in Flank Face ar High Speed Steel (고속도강공구의 플랭크면 절삭온도 예측에 관한 연구)

  • 전태옥;배춘익
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.1
    • /
    • pp.45-53
    • /
    • 1995
  • Temperature distribution on flank face in orthogonal turning with cutting tool of high speed steel is studied by using a finite element method and experiments. Experiments are carried out to verify the validity of the temperature measurement by using a thermoelectric couple junction imbedded in a cutting tool of high speed steel. Good agreement is obtained between the analytical results and the experimental ones for the temperature distributions on flank face of cutting tool with high speed steel. The analytical results show that the temperature on the top flank face of a tool is higher because of the difference of the friction velocity on each face of the tool.

  • PDF

A Study on the Total Drag Estimation for the Aircraft Conceptual Design (항공기 개념설계를 위한 전체항력 예측에 관한 연구)

  • 김상진;전권수;이재우
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.70-82
    • /
    • 1999
  • During the aircraft conceptual design stage, rapid aerodynamic analyses over various configurations are required. Hence, empirical and analytical methods play important roles in predicting the aero-dynamic characteristics. In this study, total drag estimation method based on empirical and analytical approaches is developed. By comparing with the results of the wind tunnel experiment and existing prediction methods, it is demonstrated that the developed method is accurate and useful in predicting total drag for the whole Mach number range.

  • PDF

Analytical Estimation of Inductance at Aligned and Unaligned Rotor Positions in a Switched Reluctance Motor (스위치드 릴럭턴스 전동기의 회전자 정렬과 비정렬 위치에서의 인덕턴스 예측)

  • Lee, Chee-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.34-40
    • /
    • 2012
  • Flux linkage of phase windings or phase inductance is an important parameter in determining the behavior of a switched reluctance motor (SRM) [1-8]. Therefore, the accurate prediction of inductance at aligned and unaligned rotor positions makes a significant contribution to the design of an SRM and its analytical approach is not straightforward due to nonlinear flux distribution. Although several different approaches using a finite element analysis (FEA) or curve-fitting tool have been employed to compute phase inductance [2-5], they are not suitable for a simple design procedure because the FEA necessitates a large amount of time in both modeling and solving with complexity for every motor design, and the curve-fitting requires the data of flux linkage from either an experimental test or an FEA simulation. In this paper, phase inductance at aligned and unaligned rotor positions is estimated by means of numerical method and magnetic equivalent circuit as well, and the proposed approach is analytically verified in terms of the accuracy of estimated inductance compared to inductance computed by an FEA simulation.

Strength of prestressed concrete beams in torsion

  • Karayannis, Chris G.;Chalioris, Constantin E.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.2
    • /
    • pp.165-180
    • /
    • 2000
  • An analytical model with tension softening for the prediction of the capacity of prestressed concrete beams under pure torsion and under torsion combined with shear and flexure is introduced. The proposed approach employs bilinear stress-strain relationship with post cracking tension softening branch for the concrete in tension and special failure criteria for biaxial stress states. Further, for the solution of the governing equations a special numerical scheme is adopted which can be applied to elements with practically any cross-section since it utilizes a numerical mapping. The proposed method is mainly applied to plain prestressed concrete elements, but is also applicable to prestressed concrete beams with light transverse reinforcement. The aim of the present work is twofold; first, the validation of the approach by comparison between experimental results and analytical predictions and second, a parametrical study of the influence of concentric and eccentric prestressing on the torsional capacity of concrete elements and the interaction between torsion and shear for various levels of prestressing. The results of this investigation presented in the form of interaction curves, are compared to experimental results and code provisions.

Prediction of Cutting Temperature at High Speed Steel in Orthogonal Turning based on Finite Element Method (2차원 선삭시 유한요소법에 의한 고속도강공구의 절삭온도 예측)

  • Jun, Tae-Ok;Bae, Choon-Eek
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.102-112
    • /
    • 1995
  • Temperature distribution on the rake face and flank face in orthogonal turning with cutting tool of high speed steel is studied by using a finite element method and experiments. Experiments are carried out to verify the validity of the temperature measurement by using a thermoelectric couple junction imbedded in a cutting tool of high speed steel. Good agreement is obtained between the analytical results and the experimental ones for the temperature distributions on both the rake face and flank face of cutting tool with high speed steel. The analytical results show that the temperature on the top flank face of a tool is higher than it on the top rake face of the tool because of the difference of the friction velocity on each face of the tool.

  • PDF

Elemental analysis of rice using laser-ablation sampling: Determination of rice-polishing degree

  • Yonghoon Lee
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.12-24
    • /
    • 2024
  • In this study, laser-induced breakdown spectroscopy (LIBS) was used to estimate the degree of rice polishing. As-threshed rice seeds were dehusked and polished for different times, and the resulting grains were analyzed using LIBS. Various atomic, ionic, and molecular emissions were identified in the LIBS spectra. Their correlation with the amount of polished-off matter was investigated. Na I and Rb I emission line intensities showed linear sensitivity in the widest range of polished-off-matter amount. Thus, univariate models based on those lines were developed to predict the weight percent of polished-off matter and showed 3-5 % accuracy performances. Partial least squares-regression (PLS-R) was also applied to develop a multivariate model using Si I, Mg I, Ca I, Na I, K I, and Rb I emission lines. It outperformed the univariate models in prediction accuracy (2 %). Our results suggest that LIBS can be a reliable tool for authenticating the degree of rice polishing, which is closed related to nutrition, shelf life, appearance, and commercial value of rice products.

Prediction of Impact Life Time in Solder Balls of the Board Level Flip Chips by Drop Simulations (낙하해석을 통한 보드 레벨 플립칩에서의 솔더볼 충격수명에 관한 연구)

  • Jang, Chong Min;Kim, Seong Keol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.237-242
    • /
    • 2014
  • Recently much research are has been done into the compositions of lead-free solders. As a result, there has been a rapid increase in the number of new compositions. In the past, the properties of these new compositions were determined and verified through drop-impact tests. However, these drop tests were expensive and it took a long time to obtain a result. The main goal of this study was to establish an analytical method capable of predicting the impact life-time of a new solder composition for board-level flip chips though the application of drop simulations using LS-DYNA. Based on the reaction load obtain with LS-DYNA, the drop-impact fracture cycles were predicted. The study was performed using a Sn-3.0Ag-0.5Cu solder (305 composition). To verify the reliability of the proposed analytical method, the results of the drop-impact tests and life-time analysis were compared, and were found to be in good agreement. Thus, the new analytical method was shown to be very useful and effective.

Computer modeling and analytical prediction of shear transfer in reinforced concrete structures

  • Kataoka, Marcela N.;El Debs, Ana Lucia H.C.;Araujo, Daniel de L.;Martins, Barbara G.
    • Computers and Concrete
    • /
    • v.26 no.2
    • /
    • pp.151-159
    • /
    • 2020
  • This paper presents an evaluation of shear transfer across cracks in reinforced concrete through finite element modelling (FEM) and analytical predictions. The aggregate interlock is one of the mechanisms responsible for the shear transfer between two slip surfaces of a crack; the others are the dowel action, when the reinforcement contributes resisting a parcel of shear displacement (reinforcement), and the uncracked concrete comprised by the shear resistance until the development of the first crack. The aim of this study deals with the development of a 3D numerical model, which describes the behavior of Z-type push-off specimen, in order to determine the properties of interface subjected to direct shear in terms cohesion and friction angle. The numerical model was validated based on experimental data and a parametric study was performed with the variation of the concrete strength. The numerical results were compared with analytical predictions and a new equation was proposed to predict the maximum shear stress in cracked concrete.

A new analytical-numerical solution to analyze a circular tunnel using 3D Hoek-Brown failure criterion

  • Ranjbarnia, Masoud;Rahimpour, Nima;Oreste, Pierpaolo
    • Geomechanics and Engineering
    • /
    • v.22 no.1
    • /
    • pp.11-23
    • /
    • 2020
  • In this study, a new analytical-numerical procedure is developed to give the stresses and strains around a circular tunnel in rock masses exhibiting different stress-strain behavior. The calculation starts from the tunnel wall and continues toward the unknown elastic-plastic boundary by a finite difference method in the annular discretized plastic zone. From the known stresses in the tunnel boundary, the strains are calculated using the elastic-plastic stiffness matrix in which three dimensional Hoek-Brown failure criterion (Jiang and Zhao 2015) and Mohr-Coulomb potential function with proper dilation angle (i.e., non-associated flow rule) are employed in terms of stress invariants. The illustrative examples give ground response curve and show correctness of the proposed approach. Finally, from the results of a great number of analyses, a simple relationship is presented to find out the closure of circular tunnel in terms of rock mass strength and tunnel depth. It can be valuable for the preliminary decision of tunnel support and for prediction of tunnel problems.

Micromechanical analysis on anisotropic deformation of granular soils (미시역학을 이용한 사질토의 이방적 변형 특성의 해석)

  • Jung, Young-Hoon;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.129-136
    • /
    • 2004
  • Anisotropic characteristics of deformation are important to understand the particular behavior in the pre-failure state of soils. Recent experiments shows that cross-anisotropic moduli of granular soils can be expressed by functions of normal stresses in the corresponding directions, which is closely linked to micromechanical characteristics of particles. Granular soils are composed of a number of particles so that the force-displacement relationship at each contact point governs the macroscopic stress-strain relationship. Therefore, the micromechanical approach in which the deformation of granular soils is regarded as a mutual interaction between particle contacts is one of the best ways to investigate the anisotropic deformation of soils. In this study, a numerical program based on the theory of micromechanics is developed. Modified Hertz-Mindlin model is adopted to represent the force-displacement relationship in each contact point for the realistic prediction of anisotropic moduli. To evaluate the model parameters, a set of analytical solutions of anisotropic moduli is derived in the isotropic stress condition. By comparing the analytical solutions with exact values, we confirm that the analytical solutions can be utilized to evaluate model parameters within the acceptable range of error of 10%.

  • PDF