• Title/Summary/Keyword: Analytical Capacity Models

Search Result 158, Processing Time 0.02 seconds

Residual capacity assessment of post-damaged RC columns exposed to high strain rate loading

  • Abedini, Masoud;Zhang, Chunwei
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.389-408
    • /
    • 2022
  • Residual capacity is defined as the load carrying capacity of an RC column after undergoing severe damage. Evaluation of residual capacity of RC columns is necessary to avoid damage initiation in RC structures. The central aspect of the current research is to propose an empirical formula to estimate the residual capacity of RC columns after undergoing severe damage. This formula facilitates decision making of whether a replacement or a repair of the damaged column is adequate for further use. Available literature mainly focused on the simulation of explosion loads by using simplified pressure time histories to develop residual capacity of RC columns and rarely simulated the actual explosive. Therefore, there is a gap in the literature concerning general relation between blast damage of columns with different explosive loading conditions for a reliable and quick evaluation of column behavior subjected to blast loading. In this paper, the Arbitrary Lagrangian Eulerian (ALE) technique is implemented to simulate high fidelity blast pressure propagations. LS-DYNA software is utilized to solve the finite element (FE) model. The FE model is validated against the practical blast tests, and outcomes are in good agreement with test results. Multivariate linear regression (MLR) method is utilized to derive an analytical formula. The analytical formula predicts the residual capacity of RC columns as functions of structural element parameters. Based on intensive numerical simulation data, it is found that column depth, longitudinal reinforcement ratio, concrete strength and column width have significant effects on the residual axial load carrying capacity of reinforced concrete column under blast loads. Increasing column depth and longitudinal reinforcement ratio that provides better confinement to concrete are very effective in the residual capacity of RC column subjected to blast loads. Data obtained with this study can broaden the knowledge of structural response to blast and improve FE models to simulate the blast performance of concrete structures.

Effect of tension stiffening on the behaviour of square RC column under torsion

  • Mondal, T. Ghosh;Prakash, S. Suriya
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.501-520
    • /
    • 2015
  • Presence of torsional loadings can significantly affect the flow of internal forces and deformation capacity of reinforced concrete (RC) columns. It increases the possibility of brittle shear failure leading to catastrophic collapse of structural members. This necessitates accurate prediction of the torsional behaviour of RC members for their safe design. However, a review of previously published studies indicates that the torsional behaviour of RC members has not been studied in as much depth as the behaviour under flexure and shear in spite of its frequent occurrence in bridge columns. Very few analytical models are available to predict the response of RC members under torsional loads. Softened truss model (STM) developed in the University of Houston is one of them, which is widely used for this purpose. The present study shows that STM prediction is not sufficiently accurate particularly in the post cracking region when compared to test results. An improved analytical model for RC square columns subjected to torsion with and without axial compression is developed. Since concrete is weak in tension, its contribution to torsional capacity of RC members was neglected in the original STM. The present investigation revealed that, disregard to tensile strength of concrete is the main reason behind the discrepancies in the STM predictions. The existing STM is extended in this paper to include the effect of tension stiffening for better prediction of behaviour of square RC columns under torsion. Three different tension stiffening models comprising a linear, a quadratic and an exponential relationship have been considered in this study. The predictions of these models are validated through comparison with test data on local and global behaviour. It was observed that tension stiffening has significant influence on torsional behaviour of square RC members. The exponential and parabolic tension stiffening models were found to yield the most accurate predictions.

Timber-FRP composite beam subjected to negative bending

  • Subhani, Mahbube;Globa, Anastasia;Moloney, Jules
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.353-365
    • /
    • 2020
  • In the previous studies, the authors proposed the use of laminated veneer lumber - carbon fiber reinforced polymer (LVL-CFRP) composite beams for structural application. Bond strength of the LVL-to-CFRP interface and flexural strengthening schemes to increase the bending capacity subjected to positive and negative moment were discussed in the previous works. In this article, theoretical models are proposed to predict the moment capacity when the LVL-CFRP beams are subjected to negative moment. Two common failure modes - CFRP fracture and debonding of CFRP are considered. The non-linear model proposed for positive moment is modified for negative moment to determine the section moment capacity. For the debonding based failure, previously developed bond strength model for CFRP-to-LVL interface is implemented. The theoretical models are validated against the experimental results and then use to determine the moment-rotation behaviour and rotational rigidity to compare the efficacy of various strengthening techniques. It is found that combined use of bi- and uni-directional CFRP U-wrap at the joint performs well in terms of both moment capacity and rotational rigidity.

Analysis and design of eccentrically loaded lightweight aggregate concrete-encased steel slender columns

  • Mostafa M.A. Mostafa
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.25-42
    • /
    • 2023
  • This paper presents a finite element (FE) simulation of eccentrically loaded lightweight aggregate concrete-encased steel (LACES) columns with H-shaped steel sections, analytical equations are also established to estimate the columns' axial and bending moment interaction capacities. The validity of the proposed models is checked by comparing the results with experimental data. Good agreements between the test and proposed models' results are found with acceptable agreements. Moreover, design parameters, including the lightweight aggregate concrete (LWAC) strength, eccentricity, column slenderness ratio, and confinement, are studied using the FE analysis, and their efficiency factors are discussed. The results show that the ultimate axial capacity of the LACES composite columns subjected to eccentric loading is negatively affected by the increase in the columns' height, but it is positively affected by the increase of the confinement. Increasing the eccentricity and columns' height reduced the columns'stiffness. In addition, the ultimate capacity of the LACES column is significantly influenced by the LWAC strength and eccentricity, where the ultimate capacity of the LACES column is significantly increased by increasing LWAC strength, and it is remarkably decreased by increasing the eccentricity. When the eccentricity changed from zero to 70 mm, the ultimate axial capacity and stiffness decreased by 67.97% and 63.56%, respectively.

Stiffener configurations of beam to concrete-filled tube column connections

  • Dessouki, Abdelrahim K.;Yousef, Ahmed H.;Fawzy, Mona M.
    • Steel and Composite Structures
    • /
    • v.17 no.1
    • /
    • pp.83-103
    • /
    • 2014
  • The objective of this research is to study the ultimate moment capacity of the connections between steel I-beams and concrete-filled steel tube columns using different stiffener configurations. The main parameters considered are column cross section shape, square or circular, and filling the column with concrete. This analytical study includes finite element models using ANSYS program taking geometric and material nonlinearities into consideration. These models are verified against the experimental results obtained from previous researches and current design guides. The results show that using proper stiffener configuration affects the stress distribution through the connection and increases the ultimate moment capacity of the connections. Also, circular column is advantageous than the square column for all stiffener configurations and dimensions.

Analysis of light-frame, low-rise buildings under simulated lateral wind loads

  • Fischer, C.;Kasal, B.
    • Wind and Structures
    • /
    • v.12 no.2
    • /
    • pp.89-101
    • /
    • 2009
  • The Monte Carlo procedure was used to simulate wind load effects on a light-frame low-rise structure of irregular shape and a main wind force resisting system. Two analytical models were studied: rigid-beam and rigid-plate models. The models assumed that roof diaphragms were rigid beam or rigid plate and shear walls controlled system behavior and failure. The parameters defining wall stiffness, including imperfections, were random and included wall stiffness, wall capacity and yield displacements. The effect of openings was included in the simulation via a set of discrete multipliers with uniform distribution. One and two-story buildings were analyzed and the models can be expanded into multiple-floor structures provided that the assumptions made in this paper are not violated.

Investigation of interface response of reinforced concrete columns retrofitted with composites

  • Achillopoulou, Dimitra V.;Kiziridou, Alexandra N.;Papachatzakis, Georgios A.;Karabinis, Athanasios I.
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1337-1358
    • /
    • 2016
  • The current study focuses on the assessment and interface response of reinforced concrete elements with composite materials (carbon fiber reinforced polymers-CFRPs, glass fiber reinforced polymers-GFRPs, textile reinforced mortars-TRM's, near surface mounted bars-NSMs). A description of the transfer mechanisms from concrete elements to the strengthening materials is conducted through analytical models based on failure modes: plate end interfacial debonding and intermediate flexural crack induced interfacial debonding. A database of 55 in total reinforced concrete columns (scale 1:1) is assembled containing elements rehabilitated with various techniques (29 wrapped with CFRP's, 5 wrapped with GFRP's, 4 containing NSM and 4 strengthened with TRM). The failure modes are discussed together with the performance level of each technique as well as the efficiency level in terms of ductility and bearing/ bending capacity. The analytical models' results are in acceptable agreement with the experimental data and can predict the failure modes. Despite the heterogeneity of the elements contained in the aforementioned database the results are of high interest and point out the need to incorporate the analytical expressions in design codes in order to predict the failure mechanisms and the limit states of bearing capacities of each technique.

Performance and blocking probability in a two-class CDMA system with mobile station of 2 classes (2 클래스 CDMA 시스템의 성능과 블록킹 확률)

  • 김두용;최덕규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.6
    • /
    • pp.1501-1509
    • /
    • 1996
  • Mobile stations can be classified by the transmission power level in CDMA system. Different performance parameters will be given to each class of mobile stations so that the appropriate quality ofservices can be provided. In this paper, it is assumed that there are two clsses of mobile stations. with the classification of mobile stations, analytical models are presented for the estimates of the reverse link capacity and the blocking probability. From the model for the reverse link capacity, the maximum number of each class of mobile stations to be served is derived. It is shown that $E_{b/}$I reduction of 1 dB allows the capacity to be increased by 25% and the data transmission rate and the power control accuracy have a significant effect on the reverse link capacity and the blocking probability. Simulation results are provided for validating the anlaytical estimates of the blocking probability.ocking probability.y.

  • PDF

Seismic performance of beam-to- SST column connection with external diaphragm

  • Rong, Bin;Yin, Shuhao;Zhang, Ruoyu;Wang, Lei;Yang, Ziheng;Li, Hongtao;Wan, Wenyu
    • Steel and Composite Structures
    • /
    • v.37 no.6
    • /
    • pp.633-647
    • /
    • 2020
  • This paper aims to study the seismic performance of external diaphragm connection between SST (square steel tube) column and H-shaped beam through experimental and analytical study involving finite element (FE) method and theoretical analysis. In the experimental study, three external diaphragm connection specimens with weak panel zone were tested under axial pressure on the top of the column and antisymmetric cyclic loads at the beam end to investigate the seismic performance of the panel zone. The hysteretic behavior, failure mode, stiffness and ductility of the specimens were discussed. Key point to be explored was the influence of the thickness of the steel tube flange on the shear capacity of the specimens. In the analytical study, three simplified FE models were developed to simulate the seismic behavior of the specimens for further analysis on the influence of steel tube flange. Finally, four existing calculation formulas for the shear capacity of the external diaphragm connection were evaluated through comparisons with the results of experiments and FE analysis, and application suggestions were put forward.

The effect of tensile reinforcement on the behavior of CFRP strengthened reinforced concrete beams: An experimental and analytical study

  • Javad Sabzi;M. Reza Esfahani;Togay Ozbakkaloglu;Ahmadreza Ramezani
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.115-132
    • /
    • 2023
  • The present study experimentally and analytically investigates the effect of tensile reinforcement ratio and arrangement on the behavior of FRP strengthened reinforced concrete (RC) beams. The experimental part of the program was comprised of 8 RC beams that were tested under four-point bending. Results have shown that by keeping the total cross-section area of tensile reinforcing bars constant, in specimens with a low reinforcement ratio, increasing the number and decreasing the diameter of bars in the section lead to 21% and 29% increase in the load-carrying capacity of specimens made with normal and high compressive strength, respectively. In specimens with high reinforcement ratio, a different behavior was observed. Furthermore, the accuracy of the existing code provisions and analytical models in predicting the load-carrying capacity of the FRP strengthened beams failed by premature debonding mode were evaluated. Herein, a model is proposed which considers the tensile reinforcement ratio (as opposed to code provisions) to achieve more accurate results for calculating the load carrying capacity of FRP strengthened RC beams.