본 연구는 Navier-Stokes 식의 모형방정식으로 이류 및 확산거동을 갖는 선형화된 Burgers 방정식과 비선형 형태의 Burgers 방정식을 선택하여, 이에 대한 유한차분법과 유한해석법의 수치해를 해석해와 비교하여 봄으로써, 유한해석법의 응용성에 대해 고찰한 것이다. 본 연구를 통하여 얻어진 성과를 요약하면 다음과 같다. Burgers 방정식 및 선형화된 Burgers 방정식의 정상상태의 해석해를 사용하여 두 수치기법에 따른 수치해를 비교해 본 결과, 해석해와의 근사정도를 동일 기준 하에서 살펴볼 때, 유한해석법이 유한차분법보다 우수한 것으로 나타났다. Burgers 방정식의 비정상상태의 해석해에 대한 정확성 또한 유한해석법이 보다 잘 일치하는 것으로 나타났다. 특히 유한해석법은 유한차분법의 사용시 격자 크기의 선택에 따라 해의 수렴과정에서 발생할 수 있는 위상오차에 기인한 진동현상이 전혀 발생하지 않는다는 것을 확인할 수 있었으며, 따라서 유한해석법은 수치기법상 위상오차로부터 자유로운 안정된 해석기법이라고 판단된다.
등가렌즈는 전체굴절능과 주변광선에 대한 근축광학적 특성은 같지만 축상두께가 다른 렌즈이다. 이 연구에서는 두꺼운 렌즈를 등가렌즈로 변환하는 해석적인 방법에 대하여 연구하였고, 변환조건이 2차방정식의 해로서 주어짐을 보였다. 모든 두꺼운 렌즈는 유일해인 경우를 제외하면 이 2차방정식의 두 실근중의 하나이기 때문에 반드시 공액해가 1개 존재한다. 이 공액해는 축성 두께와 근축광학적 특성은 같지만 모양과 수차특성은 다르다. 예제 렌즈의 등가렌즈 변환을 통하여 등가렌즈와 이에 대응하는 공액해의 특성을 살펴보았다.
The adhesively bonded tubular single lap joint shows large nonlinear behavior in the loaddisplacement relation, because structural adhesives for the joint are usually rubber toughened, which endows adhesives with nonlinear shear properties. since the majority of load transfer of the adhesively bonded tubular single lap joint is accomplished by the nonlinear behavior of the adhesive, its torque transmission capability should be calculated incorporating nonlinear shear properties. However, both the analytic and numerical analyses become complicated if the nonlinear shear properties of the adhesive are included during the calculation of torque transmission capabilities. In this paper, in order to obtain the torque transmission capabilities easily, an iterative solution which includes the nonlinear shear properties of the adhesive was derived using the analytic solution with the linear shear properties of the adhesive. Since the iterative solution can be obtained very fast due to its simplicity, it has been found that it can be used in the design of the adhesively bonded tubular single lap joint.
In the present paper, we evaluate an analytic formula as a solution of Susceptible Infective (SI) model problem for communicable disease in which the daily contact rate (C(N)) is supposed to be varied linearly with population size N(t) that is large so that it is considered as a continuous variable of time t. Again, we introduce some Lie group of operators to make an extension of above analytic formula of the determin-istic epidemics model problem. Finally, we discuss some of its particular cases.
In this paper, we study analytic and geometric properties of the solution q(z) to the differential equation q(z) + zq'(z)/q(z) = h(z) with the initial condition q(0) = 1 for a given analytic function h(z) on the unit disk |z| < 1 in the complex plane with h(0) = 1. In particular, we investigate the possible largest constant c > 0 such that the condition |Im [zf"(z)/f'(z)]| < c on |z| < 1 implies starlikeness of an analytic function f(z) on |z| < 1 with f(0) = f'(0) - 1 = 0.
Journal of Electrical Engineering and information Science
/
제1권1호
/
pp.29-38
/
1996
To improve the reliability of control systems, certain robustness to plant uncertainties and disturbance inputs is required in terms of well founded mathematical basis. Robust control theory was set up and developed until now from this motivation. In this field, H$_2$or H\ulcorner norm performance measures are frequently used nowadays. Moreover a mixed H$_2$/H\ulcorner control problem is introduced to combine the merits of each measure since H$_2$control usually makes more sense for performance while H\ulcorner control is better for robustness to plant perturbations. However only some partial analytic solutions are developed to this problem under certain special cases at this time. In this paper, the mixed H$_2$/H\ulcorner control problem is considered. The analytic(or semi-analytic) solutions of (sub)optimal mixed H$_2$/H\ulcorner state-feedback controller are derived for the scalar plant case and the multivariable plant case, respectively. An illustrative example is given to compare the proposed analytic solution with the existing numerical one.
In this paper some procedures are given whereby an analytic solution may be found for the Riccati differential equation and algebraic Riccati equation in optimal control theory. Some iterative techniques for solving these equations are presented. Rate of convergence and initialization of the iterative processes are discussed.
다공성 매질상에서 유체와 용질의 이동은 Mobile zone과 Immobile zone으로 분리해서 분석하는 Mobile-Immobile Zone Model을 이용하여 쉽게 현상을 구현할 수 있었으나 본 연구에서는 2차원 4각형태의 pore 상에서 확산주도영역(Immobile zone)으로 들어가고 나오는 용질의 확산에 관한 새로운 Analytic solution을 유도하여 기존 MIM Zone model과 비교 분석하였다. 새롭게 유도된 Analytic solution은 기존의 MIM model 과 비교했을때 충분히 오랜시간이 경과한 후에는 해의 일치를 보이지만 MIM model의 경우 초기 농도값이 주입된 실제 농도보다 약 20 % 낮게 나타난다. Mass-transfer 계수, $\alpha$는 일반적으로 시간의 흐름에 따라 감소하게 되는데 일정 시간이 경과하게 되면 안정화 되고 일정함을 유지하며 그 시간은 무차원으로 약 ${\tau}_0=0.15$이다. 또한 $\alpha$는 분자확산과 비례하며 Immobile 영역의 깊이와 반비례하는 반면 작은 시간이 경과한 후에는 시간에 종속되어진다.
편미분방정식해법을 위한 효일적인 방법 중의 하나는 미분구적법이다. 이방법은 복잡한 구조 및 하중에 따른 컴퓨터 용량의 과도한 사용뿐만 아니라, 복합알고리즘의 어려움 피하기 위해 많은 분야에 적용되어 왔다. 본 연구에서는 내평면 등분포하중 하에서 단면적이 변하는 비대칭 곡선보의 좌굴 (buckling)을 미분구적법(DQM)으로 해석하였다. 다양한 단면적 변화와 열림각 (opening angle)에 따른 임계하중을 계산하였다. DQM의 해석결과는 정확한 수학적해법 (exact analytic solution)과 비교하였으며, DQM은 적은 격자점 (grid point)을 사용하여 정확한 해석결과를 보여주었다. 또한, 다양한 단면적 변화에 따른 새로운 결과를 제시하였다.
해석함수 전개 노달방법의 수학적 수한해를 AFEN코드에 약간의 수정을통하여 AFEN노달 방정식의 전치행 렬 방정식을 풀어서 계산하였다. 또한 이 수반해를 사용하여 섭동이론(정확한 섭동이론과 일차근사 섭동이론)을 이용한 계산이 반응도 변화를 예측하기 위해 두개의 잘 알려진 표준문제를 통하여 수행되었다. 본 연구에서 수반해의 계산방법은 물리적 수반해 및 정방정식의 고유치를 필요로 하지 않는다. 계산결과들은 본 논문에서 계산된 수반해가 AFEN방법의 정화한 수학적 수반해임을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.