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On Lagrangian Approach to Mixed H,/H
Control Problem: The Stale Feedback Case

Kwang-Hyun Cho and Jong-Tae Lim

Albstract

To improve the reliability of control systems, certain robustness to plant uncertainties and disturbance inputs is required in
terms of well founded mathematical basis, Robust control theory was set up and developed until now from this motivation.
In this field, H, or H .-norm performance measures are frequently used nowadays. Moreover a mixed H./H. control problem

is introduced to combine the merits of each measure since K, control usually makes more sense for performance while H.

control is better for robustness to plant perturbations. However only some partial analytic solutions are developed to this problem

under certain special cases at this time.

In this paper, the mixed H,/H., control problem is considered. The analytic (or semi-analytic) solutions of (sub)optimal mixed

Ho/H,. state-feedback controller are derived for the scalar plant case and the muliivariable plant case, respectively. An

illusirative example is given to compare the proposed analytic solution with the existing numerical one.

I. Introduction

The H. design methodology has become very popular in
recent years. The primary significance of #., theory is that
it can be combined with certain analysis methods, for
example, structured singular value or . analysis, to give a
robust controller synthesis technique for systems with
structured uncertainty. There is no comparable method yet for
robust H, synthesis. Moreover, in addition to the fact that
H. design embodies many classidesign objectives, it also
presents a natural tool for modeling plant uncertainty in
terms of normed A, plant neighborhoods. In contrast, the
H, topology has been shown to be too weak for a practi
robustness theory, while the A..-norm is not only suitable for
robust stabilization but is also conveniently submultiplicative.
The weakness of H, theory in robustness is complemented
by perfarmance improvement over large frequencies.

Typically an H. controller design gives a lower, flatter
closed-loop frequency response than that of the H, controfler
when comparing a pure #, controller design on the same
problem with the generalized plant G is fixed. This is shown

Manuscript received March 27, 1995; accepted October 23,.1995.
The authors are with Department of Elecrical Engineering, KAIST, Dacjon,
Korea.

in the following example {1] in Fig. 1.
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Fig. §. Comparison of H,, H., and mixed H,/H.
performances.

The solid line corresponds to the A, design, the dashed
line corresponds to an #, design that is 5% suboptimal, and
the dotted line is a mixed H, and H. design. These
observations suggest that it would be nice to have a theory
that directly handles both #, and H. performance objectives
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at the same time. This motivates us to consider a more
general problem which achieves this goal naturally and also
gives a unified approach to solve both #, and H. control
problems. Of course, the real motivation for the mixed
problem is that H, usually makes more sense for
performance, but H. is better for robustness to plant

perturbations. Thus naturally we want a theory that handles

both. The obvious advantage for a mixed norm is that it
gives a natural trade-off between H, performance and H.

performance.

In this paper, a mixed H,/H. control problem is
considered. This is the protlem of finding an internally
stabilizing controller that minimizes a mixed H,/H.
performance measure subject to an inequality constraint on
the H.-norm of another closed-loop transfer function. This
problem can be interpreted and motivated as a problem of
optimal nominal performance subject to a robust stability
constraint.

Rotea and Khargonekar [2] have obtained some sufficient
conditions for the solvability of the mixed H,/H. control
problem in the state-feedback case. Bemstein and Haddad [3]
and Ridgely and er al. [14] gave necessary conditions for
optimality of controllers of a predefined order. Doyle et al.
[4] and Zhou er al. [1] have :onsidered a problem which is
equivalent to the dual of the problem of Bernstein and
Haddad. They have given necessary and sufficient conditions
for the existence of an optimal controller but these are given
in terms of coupled nonlinear matrix equations. At this time,
there are no effective procedures for solving these equations
other than certain homotopy methods developed by Richter
[5] and Mariton and Bertrand [6]. Boyd et al. [7] have
developed the convex programming approach to the mixed
‘H./H.. control problem. They have reduced such controller
synthesis problems to convex cptimization problems over the
infinite-dimensional space of stable transfer functions.
Khargonekar and Rotea [8] further reduced the search space
into a bounded set of real matrices. Although the convex
programming approach offers ¢ feasible numerialternative to
the mixed H,/H. control problem, there is no completely
analytic solution to this problem.

In this paper, we focus on "he mixed H,/H. problem as
formulated by Bernstein and ldaddad [3]. The analytic (or
semi-analytic) solution to this problem is derived on the
framework of convex optimization given by Khargonekar and
Rotea [8] using the relationship between the constrained
extrema and Lagrange multipliers [9]. The paper is organized
as follows. Section [ is devoted to problem formulation on
the framework of Khargonekar and Rotea [8]. The
state-feedback problem and the conversion of the given
problem into a convex optimization problem by Khargonekar
arid Rotea [8] are included in this section. In Section I, the
reduced problem is solved analyticaily (or semi-analytically)

for the scalar plant case and the multivariable plant case,
respectively. We conclude this section with the simple
example used by Khargonekar and Rotea [8] to compare our
analytic method with the existing numerione. This illustrates
some interesting features of our approach. Finally, some
concluding remarks follow in Section IV.

II. Statement of the Problem

1. Characterization of the Mixed H,/H. Performance
Measure

Consider the finite-dimensional LTI system G shown in
Fig. 2.

¢ [ . }

- 2]

Fig. 2. Diagram for the definition of the mixed
H,/H,, performance measure.

Assume that G is internally stable [10] and that it is
described by the following state-space model:

x = Fx+Gow
2y = Hp+jw 0))
2, = H1x+]1w

where all the matrices are real and of compatible
dimensions, and F is a stability matrix. Let the transfer
matrix from o to z is:

Tz”m
Tzw =

T

2w

| Tooll»< oo if and only if J,=0 and, in this case, if L,

denotes the controllability Grammian of the pair (F,G), ie.,
L . satisfies [10]

FL . +L . F +GG =0
then
I T ool 3 = tH{(HL Hy).

Let the scalar y be given and assume that | 7,,J <7
Define M =71-JJ,, then M > 0. It is well known [10] that
there exists a real symmetric matrix Y such that

R(Y):=FY+YF +(YH,+GI)M H, Y+1,G)+GG =0  (2)
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and F+(YH, +GJ)M'H, is asymptotically stable. Moreover,
Y satisfies

0<L <Y< ?

where P denotes any real symmetric solution to the
quadratic matrix inequality R( ?)<0 [11]. Thus, if the H,
-norm of T,, is finite, then .

I 7ol 3=t HL Hy)<tr(Hy YH,).

From this the following definition of the mixed H./H.,
performance measure for the LTI G is derived [3].

© ifJ,+0

HT ={ tH{HyYH,) otherwise.

Note that the mixed H,/H. performance measure [ T,,) is
also a function of the parameter y. However we will not
make this dependence explicit since y will be remained fixed
throughout this paper.

The following lemma provides an alternative characteri-
zation for the mixed H./H. performance K T.) that will be
useful for establishing some of the results in this paper.

Lemma 1([8]) Consider the stable system G defined in (1)
and let T, denote the transfer matrix from o to z={(z, 2.
Let »>0 be given. Assume that | T,,.l .<y and that T, is

strictly proper. Let R( - } be given in (2). Then

KT .= inf{tr(HyYH,): Y=Y >0 such that R(¥)<0}.

2. Synthesis Framework

The synthesis framework addressed in this paper follows
the problem formulated by Khargonekar and Rotea [8] which
was originally introduced by Bernstein and Haddad [3].
Consider the finite-dimensional LTI feedback system depicted
in Fig.3, where the plant G and th® controller C are given
by some state-space models.

The signal o denotes an exogenous input, while z, and z,
denote controlled signals. The signals # and y denote the
control input and the measured output, respectively. The
transfer matrices of the plant and the controller are denoted
by G and C, respectively. We denote the closed-loop transfer
matrix by

T 20w
T w™

Tz.w

where 7T,, and T,, denote the closed-loop transfer
matrices from o to z, and o to z;, respectively.

A controller C is called admissible if C intemally
stabilizes the plant G. Internal stability means that the states
of G and C go to zero from all initial values when «=0.
Since we will restrict our attention exclusively to proper,
real-rational controllers which are stabilizable and detectable,
these properties will be assumed throughout. The set of all

admissible controllers C for the plant G is denoted by A(G).
Note that A(G)+e@ if and only if G is stabilizable from u
and detectable from y.

Y

Fig. 3. The synthesis framework.

Consider the feedback interconnection shown in Fig.3, let
y be given, and define the following set of controllers:

A(G):={CeAG Tl <7 3

L2

where the subscript *‘ «’’ in the notation A .(G) stands for
the constraint on the oo-norm. Following Bernstein and
Haddad [3], the optimal or suboptimal mixed H./H..
controller synthesis problem considered in this paper is
defined as follows.

The Mixed H,/H.. Control Problem: **Compute the mixed
H./H., optimal performance measure

W(G): = inf{KT ) CeA (G)) @

and find an optimal controller C e A(G) or, given any
2> (G), find a suboptimal controller ¢ e A .(G) such that
KT )<a”

Note that the performance measure in (4) is the same as
one used in [3] and {8]. -

3. State-Feedback Problem

We consider the case where the plant to be controlled is
given by a state-space model in which the state vector is
available for feedback. Consider the mixed H,/H., synthesis
problem defined in Section II for the following plant:

x = Ax+Bw+Bu
._ |2 = Cux+Dyu
Gy 2y = Cx+Du ®
y = x

All the matrices in (5) are real and of compatible
dimensions. Let G, denote the transfer matrix of (5). Note
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that we exclude the feedthrough terms to make the
presentation simple as before.

Given a plant G, and an internally stabilizing controller C,
the mixed H,/H. cost of the closed-loop system is a function
of the transfer matrix T, only for a fixed . Since 7T,
depends only on the transfe: matrices G, and C, let

KRGy, O =AT .Gy, O)

denote the mixed H,/H., cost corresponding to the feedback
system.

Now, given the plant G, defined in (5), we are interested
in the computation of constant state-feedback matrices for the
minimization of JG, K) sirce the infimum of the mixed
Hy/Ho pérformance measure over all dynamic full
information feedback controllers equals the infimum over all
static state-feedback controllers [8].

D. Conversion to the Convex Optimization Problem

In this section, conversion of the static state-feedback
problem to the convex optimization problem formulated by
Khargonekar and Rotea [8] will be shown.

We assume that y=1 without loss of generality. For the
state-feedback plant defined in (5), let n=dim(x) and
q=dim(u). Let x> denote the set of »x» real symmetric
matrices and define

2={(WYNeR""™xX2Y>0}. ©)

Note that © is an open strctly convex subset of R "xJ.
Given (W V) € 0, define

AW, Y):=t((CoY+DyWY "(Cy Y+DyW)). 7

and for (W Y)eR’"x3 , let

QWY =AY+YA +B.W+W B, +B,B, +(C, Y+D,W) (C, Y+D,W. )

Define also the set of real matrices

Gy =((W. 1) =2 ¥, V)<0) ®

and consider the optimization problem
o(G): = inf AW, V):(W, Ned(G,). (19)

Then the mixed H,/H, synthesis problem is reduced to
finding W, Y which minimizes f{W,Y) in (7) restricted to the
condition of (9) and the stats-feedback gain K =wyr ™' is
obtained [8]. The resulting controller becomes suboptimal.
The optimal controller can be obtained by changing the
inequality in (9) into equality, since (8) is the transformed
Riccati equation in the formulation of performance measure
8] and KG,, K=wy H=AW, ) in this case.

Although the convex feasibility program method gives a
numerisolution to this problem, there is no compleiely
analytic solution until now. Mcreover there are no guarantees
that the optimum is achieved so a reasonable strategy in this
case for the convex programming approach is to repeat the

iteration and to stop when there is no appreciable
improvement in the mixed H,/H. cost JGy K).

The objective of this paper is to provide some sufficien
conditions for the existence of optimal controller and analytic
(or semi-analytic) solutions via Lagrange multiplier methoc

9.

[II. Anmnalytic Approach to State-.
Feedback Problems

In this section, we will develop an analytic (ot
semi-analytic) approach for solving the static state-feedback
problem. The main results of this paper are given in the nexi
two theorems.

A. Scalar Plant Case

Consider the mixed H,/H., synthesis problem defined in

Section [ for the following scalar plant:

x = artbwt+bu
. 13 = coxtdyu
Gy 2, = cx+du an
. v = x

All the constants in (11) are real. Note again that we
exclude the feedthrough terms to make the presentation
simple.

For the scalar plant, it means that the exogenous input o,
the control input », and the measured output y-are scalar
variables. Thus the controlled signals z, and 2z, may be
vector quantity. In this case, z, and 2, in (11) can be
rewritten as

Cox+Dyu
Cix+Dyu 2

(Z
21

For the scalar plant in (11) including (12), the static
(sub)optimal controller gain k can be found by the following

Theorem 1.
Theorem 1: Consider the system ¢, defined in (11).For

this system, except the case of a2+ df =0 and byc,+0.
(sub)optimal state-feedback gain k can be found explicitly by
solving the following cubic equation of &.

ok + BE + vk +8=10 a3

where a=dydin, B = (b +3(cid)nds y=2(codpX c1d))n+2(a+cin)
d—cidy, and 8=2(a+c D) cody) — (o + (c1dyn) i
All the solutions of k and 5 are restricted to
(c1+ iR +2(a+ bR+ bi<0and 0 (14)
and the optimum occurs when equality holds. This optimal
solution always exists if c¢,d,+0. :
For the case of multiple solutions, we choose one which
minimizes

W co+dok)? (15)
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For the case of (12), all the above things are still hold by

deﬁning oy =V CoCyr dy: =y DyDy, (cody): =(Co Do)y ¢yt =y G C,
de=yD,D, and (ad)=(c,p) and by changing the

corresponding values into vector values in each if-conditions,
compatibly.

Proof: See the Appendix.

Remark 1: At first glance, it seems that the proposed
solution is not analytic at all since the gain k and its
constraint equation contain another variable ;. However it
can be solved analytically (or semi-analytically) through two
steps: first, represent k in terms of ; and substitute this k
into the constraint equation (for optimal case) and solve it for
7 --- which is an algebraic equation of 7 of order less than
6 if dyd,=0 (otherwise this step may or may not require a
certain zero finding algorithm), then substitute this 5 into the
original formula of k.

B. Multivariable Plant Case

Consider the mixed H,/H, synthesis problem for the
multivariable plant in (§) which is rewritten in the following.

x = Ar+Bjw+Bou
=% = Cox-+Dyu
6= i3 2 G D (1)
y = x

Suppose that the variables in (16) are vectors and the
constants are real matrices of compatible dimensions. The
feedthrough terms are omitted for simple presentation as
before.

For the multivariable plant in (16), the static (sub)optimal
feedback controller K can be found by the following
Theorem 2.

Theorem 2: Consider the system G, defined in (16). If

'973 is nonsingular then the (sub)optimal state-feedback

controller X is given by xk=wy !, where %3 is nn x nn

matrix as
inl 9Q .y
Yy, Yy,
aéll . aé:iaz
aY”” aY»m
and —«‘Z}? f is the cofactor of gg"' in (978, Moreover the

elements of W can be found from

25535 ;’3 aQ,,) 2 _|JT‘7WL 17
where u = 1, -, g and v = 1,~+, n with g = dim(u), n
dim(x), and
5% = 1 GG (Y (as)
T?QVI% = [ 2Dy (Cpe DWY N1 . (19)

Further Y is restricted to

AY+YA +B,W+ W B, +B,B, +(C,Y+D/W (C, Y+D W<0 (20)

with Y = Y’ > 0, and the optimum occurs when equality
holds in (20).

Proof: See the Appendix.

In this case, we can infer about the sufficient condition for
the existence as follows.

conjecture 1: If both ¢,c, and D/D, are either positive
definite or negative definite then the optimal controller K
exists.

C. llustrative Example

In this section, we consider a simple example in order to
highlight some interesting features of the suggested method.
We will study the mixed H.,/H. synthesis problem for the
same plant which was used by Khargonekar and Rotea [8],
to compare each approach.

Consider the following scalar plant:

¥ = —xtwtu
2y = u
G: = z2i =[x ul =[ ]x+[ 1]

I

y X

The parameter » is chosen to be 1. The mixed H./H.

optimal performance in terms of the constant controller gain
K for the plant G above is given by

AG) = inf (G K=KV (K, V)= 21
where
0, ={(K, V)eRxR Y>0and Y’(1 +K°) +2(K—-1)Y+1<0}.

The constraint set @, is plotted in Fig.4.

From this figure, it is clear that this set is not convex.
Furthermore ¢, is unbounded. Note also that the cost
function J(G,K)=K’Y is not convex on {(K,Y)=eRxRY>(}.
Hence, this formulation of the synthesis problem gives rise to
a nonconvex programming problem with unbounded domain.

iy Method 1. (The existing convex programming

approach) The objective function AW v)=-% in (10) is

convex on Q={(W, Y)eRxR Y>0}. Moreover, the constraint
set @ defined in (9) is guaranteed to be convex and bounded.
For this example, the constraint set @ defined in (9) is a
circle given by

O={(W,NeRxRY>0and (W+1)’+(Y—~1)%1}.

Solutions to the suboptimal synthesis problem of finding a
controller Cc=A ,(G) such that J(G,C) < «, can be found by
intersecting the constraint set ¢ with the level sets

Aa={(W, VeRXR: 10 andlyz <a}.

This intersection is shown in Fig.5 (a)-(d) for ¢ =1, 0.1,
0.01, 0.
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Fig. 4. The constraint set @, in Y-K plane. (b)
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From these figures, by decreasing ¢, it can also be seen 1 - : :

that the optimal H,/H. performance measure for this
problem is »(G)=0, which corresponds to (Wop, Yop) =
(0,1). The unique controller that attains this optimal
performance is the constant gain Ko, = 0. Note that, even
though this gain stabilizes the closed-loop, it is not in
A.(Q), for yT,,(G K, .=1. Instead, it is attained by a 3

controller C & A(G) suth that 7,460l «=7 In
general if the two objectives | 7,.(G O | . and J(G,C) are

*“‘truly competing’® with each other, optimal controllers will
be at the boundary of the co-norm constraint {8].
iiy Method 2. (The suggested analytic solution) Applying

3 . H ; K N N i

Theorem 1 to this problem, the (sub)optimal controller X is ! 05 0 0s ! 15 2 25 3
obtained as follows: Y
TRVt ©
—l=VIABY=8Y 0 y<]
K:= 2¥ 22)
: —1+/1+8Y—-§V° forlSYsM . i . Thésets?hmndlamdg_o
2y 4
0.5} H : ; : . -
The se:s Phi and Lamda_1
1 -
os}-
ot 4
085 e o e e
3 1+ i
15+ ]
2k
_ 3
1 05 o 0s 1 15 2 25 3 @
Y Fig. 5. The set ¢ and A, : (@) e=1 (b) @=0.1(c)

(@) 2=0.01 (d) =0
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Fig. 6. The (sub)optimal controller K and the cost
function f as a function of Y : (a) Overall view
in the full range of Y (b) Close view near the
optimum.

where K and Y are used instead of & and 7. The optimum
is obtained for Y = 1 since the equality holds at this point
in the constraint formula of (14). This optimum of Koy is O
which makes the cost function v(G) in (21) smaller between
K’s in {0,-1} from (22). This can be confirmed as follows.
Since w(G)oc K’ the behavior of |K| is important in
determining the minimum of w(G). K is monotonically
increasing in the negative axis, or |K| is monotonically
decreasing as Y increases in the interval [0,1]. Moreover K
is monotonically decreasing in the negative axis, or [K| is
monotonically increasing as Y increases in the interval

[ 1,%\@] . Hence the minimum of the mixed H,/H.,

performance measure W(G) occurs when Y = 1 and the
optimal controller Ko = O is obtained. These are illustrated

in Fig.6. Of course we know that the optimal controller is
not included in Aw(G) but in A(G) since
| T.({G K o) «=1. Anyhow we can obtain the optimal

controller Ko, and the other suboptimal controller X at the
same time, without any iterative graphiprocedure as was done
in Method 1.

V. Conclusions

In this paper, we considered a mixed H,/H, control
problem on the framework of convex optimization given by
Khargonekar and Rotea [8]. The analytic (or semi-analytic)
solutions of (sub)optimal state-feedback controller are derived
for the scalar plant case and the multivariable plant case,
respectively. The proposed analytic solution is compared with
the existing numerione through an illustrative example. More
details about multivariable case and output-feedback case can
be found in [13].

Since we presented an analytic (or semi-analytic) solution,
a certain zero finding algorithm might be required for some
cases (as mentioned in the Remark 1). Thus a completely
analytic solution should be further researched. Moreover a
substantial research on the existence conditions of optimal
solution for the multivariable plant case is still needed.

Appendix

A. Proof of Theorem 1
Recall that the given mixed H,/H. control problem

reduces to the following convex optimization problem: Find ¢
and 5 such that

{Re,m) = (contdoe)’ 7,70} 23)
is minimized subject to
gle, n)=2an+2be+ b+ (c;7+d,)*< 0 (24)
where f and g comes from (7), (8). Then the (sub)optimal
controller is k=—; and the optimum occurs when equality
holds in (24). Let
gle, m=n<0
where n is any nonpositive constant. Then
e, 7)—n=0
Applying the Lagrange multiplier method [9]:

of _,0
ae“_af @5
9f _,3
87)—/1—35 26)

Moreover,
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9f _ 2c;d(,+2d;';en
—a-”— = & - fracdie® #*

-gf = 2(% tcdptdie)

%% = 2(z1+cip+cde)

Substituting these into (25), (26) with k=~f]— gives

cdy+dik = A b+ (cid,+dibn)

G—dikt = 2Ma+(+cdik)n)
By eliminating A and rearranging the terms with respect to
k, we obtain

ak'+ B + yvh+ 8= @27

where
a=didi g, B=(b+3(c1d)d;,
r=2(cod X crd)n+2(a+cind; - cidin,
and  §=2(a+cinlcydy) —(b:+ (cdyncd This equation can be

solved to obtain the explicit form of k as follows.
If do = 0 and d; = O then (27) becomes

—cidink— (by+(2ydpn)ci=0

by [}
=—| G+
k (difl dx)

If dod = 0 and d, = 0 and b, = O then (27) becomes

)
_ Latcincds _ .S

k = Bl o) .
(a+cind; dy

If dy = 0 and di = 0 and b, = O then (27) becomes
bydik + 2 a+Ediie+2(a+ cneydy— baci = 0.

This has two real roots,

4 i & ki 9 2b?
—(a+dnzy (a+cin)~b) 2a+cip-L— Lk
e | & d
- 5

If do di = O then the resulting equation becomes cubic.

Let D=—§(-§-%~_x>. 02—%(—2—‘%’“—227%)- and

k= v——é%, then (27) becomes
F+3pw~2¢=0. 28

(28) has one real solution v, and two complex solutions va3:

n= g +a+a+Vp " 29)
. /3 H 7 = 3 S
v2.3=——% vlij—\2—3(3\’ a—V @ gtV P (30)

Let p’+4°=ae” and substitute this into (30). Then, by
separating (30) into real and imaginary parts, we can classify
the following three cases.

o) if p3+q2 < 0 and p < 0 then (30) becomes two different
real roots,

UZ.BZ_Z\‘TI;COS[ —g i(% arctan(u;&ﬁl)-kmr)]

0 ifq+\/_acos76 =20
where #n = [

1 otherwise.

@i if p3+q2 = 0 then (30) becomes one real root (double
root),

02,3:—3\/_4.

(i) if p’+¢° < O and p = 0, or p’+¢* > O then(30)
becomes two complex conjugate roots. Combining these three
cases with one real root in (29) results in explicit form of &
in this case.

The constraint (24) with the condition of # in (23) can

be rewritten as follows using k=—f},
gle, )= (c1- dik)’ 7 +2(a+ b+ 5 <0 and 750
which is (14). Further, f in (23) can be rewritten as
Re, )= nlcy+doh)’

which is (15).

If ¢idi = 0 then the constraint set in (24) becomes
bounded region such as circle or ellipse and then f has
always a minimum on that region [12]. Thus the optimal
solution always exists if cid, * O.

The preservation of all the above procedures for the case
of (12) comes from the fact that the constraint g and the cost
function f are still remained as scalar quantity. This
completes the proof.

B. Proof of Theorem 2

Recall that the given mixed H,/H. control problem
reduces to the convex optimization problems in (7), (8). Then
the (sub)optimal controller is given by K = WY and the
optimum occurs when equality holds in (8). Let Q(W,Y) = N
< 0 where N is any negative semidefinite matrix. Applying

_ad_ —aA'p -9 ‘Bl — _a_ -
aWtr{ AUWB] =A B, aWtr{ AW B] =BA, aWtr{ AWBW

AWB +B WA, and Tawtr{ AVBW] =A WB + AWB, we

obtain
2 2D (Co+ DY ) 3D
and using i(”—aug——ll =—X"lux ",
2L = CoCo— (D Wr ™) (D WY ). (32)
Define
= W]
aw AW,
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Qul [ 0Qu
oWy . 8W1n
3Qu _0Qu
W, GW,,,,
H ann
aw,, W,
where 99 u =
oW, ’
Q. 9@,
oW, oW,
A= [ Al/]
and define an operator ‘%’ as
00 _09Q
A5 = [ 1] *[ aW,ﬁ.]
_ Pl n aQi/
- [ £ 20w
I A aQii . ” 5 aQij
z 2 Aigw, B BAgw,
" ” an_/_ " n an}
El ,;A oW, = jglAij ow,,

Defining similarly for the case of % and applying the

Lagrange multiplier method [9] for this multiple constraints
case :

O _ 150Q
A4 ow
2 x99
£) A%k

Substituting and reconstructing the elements of matrices
into column vectors, we can obtain (17)--(20) through the
similar procedures as in the proof of Theorem 1.
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