• Title/Summary/Keyword: Analytic simulator

Search Result 19, Processing Time 0.026 seconds

Analytic simulator and image generator of multiple-scattering Compton camera for prompt gamma ray imaging

  • Kim, Soo Mee
    • Biomedical Engineering Letters
    • /
    • v.8 no.4
    • /
    • pp.383-392
    • /
    • 2018
  • For prompt gamma ray imaging for biomedical applications and environmental radiation monitoring, we propose herein a multiple-scattering Compton camera (MSCC). MSCC consists of three or more semiconductor layers with good energy resolution, and has potential for simultaneous detection and differentiation of multiple radio-isotopes based on the measured energies, as well as three-dimensional (3D) imaging of the radio-isotope distribution. In this study, we developed an analytic simulator and a 3D image generator for a MSCC, including the physical models of the radiation source emission and detection processes that can be utilized for geometry and performance prediction prior to the construction of a real system. The analytic simulator for a MSCC records coincidence detections of successive interactions in multiple detector layers. In the successive interaction processes, the emission direction of the incident gamma ray, the scattering angle, and the changed traveling path after the Compton scattering interaction in each detector, were determined by a conical surface uniform random number generator (RNG), and by a Klein-Nishina RNG. The 3D image generator has two functions: the recovery of the initial source energy spectrum and the 3D spatial distribution of the source. We evaluated the analytic simulator and image generator with two different energetic point radiation sources (Cs-137 and Co-60) and with an MSCC comprising three detector layers. The recovered initial energies of the incident radiations were well differentiated from the generated MSCC events. Correspondingly, we could obtain a multi-tracer image that combined the two differentiated images. The developed analytic simulator in this study emulated the randomness of the detection process of a multiple-scattering Compton camera, including the inherent degradation factors of the detectors, such as the limited spatial and energy resolutions. The Doppler-broadening effect owing to the momentum distribution of electrons in Compton scattering was not considered in the detection process because most interested isotopes for biomedical and environmental applications have high energies that are less sensitive to Doppler broadening. The analytic simulator and image generator for MSCC can be utilized to determine the optimal geometrical parameters, such as the distances between detectors and detector size, thus affecting the imaging performance of the Compton camera prior to the development of a real system.

Development of three-dimensional thermal oxidation process simulator and analysis the characteristics of multi-dimensional oxide growth (1 Giga급 집적회로 구현을 위한 3차원 산화 공정 시뮬레이터 개발 및 산화층 성장 특성 분석에 관한 연구)

  • 이준하;황호정
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.8
    • /
    • pp.107-118
    • /
    • 1995
  • Three-dimensional simulator for thermal oxidation process is developed. The simulator is consisted by two individual module, one is analytic-model module and the other is numerical-model module. The analytic-model which uses simple complementary-error function guarantees fast calculation in prediction of multi-dimensional oxidation process. The numerical-model which is based on boundary element method (BEM), has a good accuracy and suitable for various process conditions. The results of this study show that oxide growth is retarded at the corner of hole structure and enhanced at the corner of island structure. These effects are reson of different distribution of oxidant diffusion and mask stress. The utility of models and simulator developed in this study is demonstrated by using it to predict not only traditional shape of LOCOS but also process effects in small geometry.

  • PDF

Arsenic implantation graph comparing with Dopant diffusion simulation and 1-D doping simulation (performed by synopsys sentaurus process)

  • Im, Ju-Won;Park, Jun-Seong
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.344-346
    • /
    • 2016
  • 본 논문에서는 3-stream model에 기반한 Dopant diffusion simulator를 사용하여 실리콘 기판 내부의 As이온의 확산을 시뮬레이션한 결과와 Dual-Pearson Analytic model에 기반하여 Ion implantation을 1-D doping simulation한 결과를 토대로 여러 공정 설계에서 diffusion simulator의 사용가능함을 확인하였다.

  • PDF

A Simulator for Potential Distribution Analysis

  • Kil, Gyung-Suk;Gil, Hyong-Jun;Park, Dae-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.225-229
    • /
    • 2012
  • This paper proposes a reduced-scale simulator that can replace numerical analytic methods for the estimation of potential distribution caused by ground faults in various grounding systems. The simulator consists of a hemispherical electrolytic tank, a three-dimensional potential probe, a grounding electrode, and a data acquisition module. The potential distribution is measured using a potentiometer with a position-tracing function when a test current flows to the grounding electrode. Using the simulator, we could clearly analyze the potential distribution for a reduced- scale model by one-eightieth of the buried depth and length of the grounding rod and grounding grid. Once both the shape of the grounding electrode and the fault current are known, the actual potential distribution can be estimated.

Analysis of Invesion Layer Quantization Effects in NMOSFETs (NMOSFET의 반전층 양자 효과에 관한 연구)

  • Park, Ji-Seon;Sin, Hyeong-Sun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.9
    • /
    • pp.397-407
    • /
    • 2002
  • A new simulator which predicts the quantum effect in NMOSFET structure is developed. Using the self-consistent method by numerical method, this simulator accurately predicts the carrier distribution due to improved calculation precision of potential in the inversion layer. However, previous simulator uses analytical potential distribution or analytic function based fitting parameter Using the developed simulator, threshold voltage increment and gate capacitance reduction due to the quantum effect are analyzed in NMOS. Especially, as oxide thickness and channel doping dependence of quantum effect is analyzed, and the property analysis for the next generation device is carried out.

A Study on Simulation of A Multiprocessor System (다중처리기 시스템의 시뮬레이션에 관한 연구)

  • Park, Chan-Jung;Shin, In-Chul;Rhee, Sang-Burm
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.10
    • /
    • pp.78-88
    • /
    • 1990
  • To evaluate the performance of a multiprocessor system, a discrete event model of memory interference in the system employing multiple-bus interconnection networks is proposed. An analytic model of the system is presented and then simulator models are implemented for cross-verifying the analytic results and simulation results. The simulator model takes as input the number of processors, the number of memory modules, the number of buses and the local memory miss ratio. The model produces as output the memory bandwidth, the processor, memory module and bus utilization and the bus contention ratio. Using the model in the design of the system, it is possible to evaluate the system performance by analyzing the interaction of the input parameters.

  • PDF

Implementation of Design Simulator for SAW Coupled Mode Resonator Filter using a Mathematical Modeling of SAW Coupled Mode (SAW 결합 모드 공진기 필터의 수학적 모델링을 이용한 설계 시뮬레이터의 구현)

  • 정영지
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.2
    • /
    • pp.291-304
    • /
    • 1999
  • In this work, a mathematical modeling of SAW coupled mode in SAW resonator filter, which is very useful in analyzing the characteristics of periodic electrode structure such as SAW reflective array and inter-digital transducers. was considered by mathematical analytic approach. The design and simulation method for resonator filter was also proposed by equivalent transduction matrix using this mathematical modeling. In order for a designer to simulate, and to design the coupled mode SAW resonator filters effectively that could be applied to mobile communication system, a design simulator for coupled mode filter was implemented by graphic user interface, and it was investigated by designing and analyzing practical SAW coupled mode resonator filter from a view point of application of this simulator.

  • PDF

A Study on an AVR Parameter Tuning Method using Real-lime Simulator (실시간 시뮬레이터를 이용한 AVR의 파라미터 튜닝에 관한 연구)

  • Kim, Jung-Mun;Mun, Seung-Il
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.2
    • /
    • pp.69-75
    • /
    • 2002
  • AVR parameter tuning for voltage control of power system generators has generally been performed with the analytic methods and the simulation methods, which mostly depend on off-line linear mathematical models of excitation control system. However, due to the nonlinear nature of excitation control system, excitation control system performance of the tuned Parameters using the above conventional tuning methods may not be appropriate for some operating conditions. This paper presents an AVR parameter tuning method using actual on-line data of the excitation control system with the parameter optimization technique. As this method utilizes on-line operating data of the target excitation control system not the mathematical model of the system, it can overcome the limitation of model uncertainty Problems in conventional method, and it can tune the AVR parameter set which gives desired performance at the operating conditions. For the verification of proposed tuning method, two case studies with scaled excitation systems and the real-time power system simulator are presented.

Structure Optimization of Inverted-Staggered a-Si TFT Using a Two-Dimensional Device Simulator (이차원 소자 시뮬레이터를 이용한 역 스태거형 비정질 실리콘 박막 트랜지스터의 구조 최적화)

  • Kwak, Ji-Hoon;Choi, Jong-Sun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1349-1351
    • /
    • 1997
  • TFT2DS was utilized to provide the usefulness as an analytic and design tool. In this paper, the general effects of channel length of an inverted staggered amorphous silicon thin film transistor on its characteristics were investigated. The results obtained from these experiments would be adopted to the optimized device designs and advanced simulations of their electrical properties.

  • PDF

A Study on the Energy Band of Amorphous Silicon using a Two-Dimensional Device Simulator(TFT2DS) (이차원 소자 시뮬레이터를 이용한 비정질 실리콘 에너지대에 관한 연구)

  • 곽지훈;이영삼;최종선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.325-327
    • /
    • 1997
  • TFT2DS was developed to provide the usability as an analytic and design tool. The static characteristics of a-Si TFTs demonstrated a good agreement between simulated and measured data. This paper shows that WDS can optimize the physical parameters of a-Si through sensitivity simulations and compute the static characteristics of a-Si TFTs.

  • PDF