• Title/Summary/Keyword: Analytic Redundancy

Search Result 18, Processing Time 0.025 seconds

Redundancy Management for a Duplex FBW Flight Control System (2중으로 다중화된 FBW/ FCS의 다중화 관리)

  • Nam, Yoon-Su;Hong, Sung-Kyung;Yoo, Chang-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.46-52
    • /
    • 2004
  • A design methodology of the redundancy management for a duplex FBW flight control system is introduced. A statistical analysis is applied to determine two design parameters in CCM(Cross Channel Monitor), threshold and persistence count. An analytic redundancy, which is implemented using a Kalman filtering algorithm is considered. The application of an analytic redundancy to the FCS design of the smart UAV has several advantages of increasing the aircraft's survivability and breaking the tie-condition for a duplex FCS. All the redundancy management algorithms are verified through the numeric simulation for the flight dynamics of the XV-15 tilt rotor.

Hybrid Fault Detection and Isolation Techniques for Aircraft Inertial Measurement Sensors

  • Kim, Seung-Keun;Jung, In-Sung;Kim, You-Dan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.73-83
    • /
    • 2006
  • In this paper, a redundancy management system for aircraft is studied, and fault detection and isolation algorithms of inertial sensor system are proposed. Contrary to the conventional aircraft systems, UAV system cannot allow triple or quadruple hardware redundancy due to the limitations on space and weight. In the UAV system with dual sensors, it is very difficult to identify the faulty sensor. Also, conventional fault detection and isolation (FDI) method cannot isolate multiple faults in a triple redundancy system. In this paper, two FDI techniques are proposed. First, hardware based FDI technique is proposed, which combines a parity equation approach with a wavelet based technique. Second, analytic FDI technique based on the Kalman filter is proposed, which is a model-based FDI method utilizing the threshold value and the confirmation time. To provide the reference value for detecting the fault, residuals are calculated using the extended Kalman filter. To verify the effectiveness of the proposed FDI methods, numerical simulations are performed.

Control input reconstruction using redundancy under torque limit

  • Park, Jonghoon;Chung, Wan-Kyun;Youm, Youngil
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.452-455
    • /
    • 1995
  • Various physical limitations which intrinsically exist in the manipulator control system, for example kinematic limits and torque limit, cause some undesirable effects. Specifically, when one or more actuators are saturated the expected control performance can not be anticipated and in some cases it induces instability of the system. The effect of torque limit, especially for redundant manipulators, is studied in this article, and an analytic method to reconstruct the control input using the redundancy is proposed based on the kinematically decomposed modeling of redundant manipulators. It results to no degradation of the output motion closed-loop dynamics at the cost of the least degradation of the null motion closed-loop dynamics. Numerical simulations help to verify the advantages of the proposed scheme.

  • PDF

Analytic Throughput Model for Network Coded TCP in Wireless Mesh Networks

  • Zhang, Sanfeng;Lan, Xiang;Li, Shuang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3110-3125
    • /
    • 2014
  • Network coding improves TCP's performance in lossy wireless networks. However, the complex congestion window evolution of network coded TCP (TCP-NC) makes the analysis of end-to-end throughput challenging. This paper analyzes the evolutionary process of TCP-NC against lossy links. An analytic model is established by applying a two-dimensional Markov chain. With maximum window size, end-to-end erasure rate and redundancy parameter as input parameters, the analytic model can reflect window evolution and calculate end-to-end throughput of TCP-NC precisely. The key point of our model is that by the novel definition of the states of Markov chain, both the number of related states and the computation complexity are substantially reduced. Our work helps to understand the factors that affect TCP-NC's performance and lay the foundation of its optimization. Extensive simulations on NS2 show that the analytic model features fairly high accuracy.

Lifetime Distribution Model for a k-out-of-n System with Heterogeneous Components via a Structured Markov Chain (구조화 마코프체인을 이용한 이종 구성품을 갖는 k-out-of-n 시스템의 수명분포 모형)

  • Kim, Heungseob
    • Journal of Applied Reliability
    • /
    • v.17 no.4
    • /
    • pp.332-342
    • /
    • 2017
  • Purpose: In this study, the lifetime distribution of a k-out-of-n system with heterogeneous components is suggested as Markov model, and the time-to-failure (TTF) distribution of each component is considered as phase-type distribution (PHD). Furthermore, based on the model, a redundancy allocation problem with a mix of components (RAPMC) is proposed. Methods: The lifetime distribution model for the system is formulated by the structured Markov chain. From the model, the various information on the system lifetime can be ascertained by the matrix-analytic (or-geometric) method. Conclusion: By the generalization of TTF distribution (PHD) and the consideration of heterogeneous components, the lifetime distribution model can delineate many real systems and be exploited for developing system operation policies such as preventive maintenance, warranty. Moreover, the effectiveness of the proposed RAPMC is verified by numerical experiments. That is, under the equivalent design conditions, it presented a system with higher reliability than RAP without component mixing (RAPCM).

Hybrid Fault Detection and Isolation Method for Inertial Sensors Using Unscented Kalman Filter (Unscented 칼만필터를 이용한 관성센서 복합 고장검출기법)

  • Park, Sang-Kyun;Kim, You-Dan;Park, Chan-Guk;Roh, Woong-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.57-64
    • /
    • 2005
  • In two-degree of freedom(TDOF) inertial sensors, two axes are mechanically correlated with each other. Fault source of one axis sensor may affect the other axis sensor, and therefore multiple fault detection and isolation(FDI) technique is required. Conventional FDI techniques using hardware redundancy need four TDOF inertial sensors for FDI. In this study, three TDOF inertial sensor redudancy case is considered, where conventional FDI technique can detect the fault, but cannot isolate the fault sensor. Hybrid FDI technique is proposed to solve this problem. Hybrid FDI technique utilizes the analytic redundancy by utilizing the unscented kalman filter as well as hardware redundancy for FDI. To verify the effectiveness of the proposed FDI technique, numerical simulations are performed using six degree of freedom nonlinear aircrft dynamics.

Fault Detection System Design and HILS Evaluation for the Smart UAV FCS

  • Nam, Yoon-Su;Jang, Hu-Yeong;Hong, Sung-Kyung;Park, Sung-Su
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.104-109
    • /
    • 2007
  • This paper is about a redundancy management system design for the Smart UAV(unmanned aerial vehicle) which utilizes the tilt..rotor mechanism. In order to meet the safety requirement on the PLOC(probability of loss of control) of $1.7{\times}10^{-5}$ per flight hour for FCS (flight control system) failures, a digital FCS is mechanized with a dual redundant structure. A fault detection system which is composed of a CCM(cross channel monitor) and analytic redundancy using the Kalman filtering is designed, and its effectiveness is evaluated through experiments. A threshold level and persistence count for managing redundant sensors are designed based on the statistical analysis of the FCS sensors. To increase the survivability of the UAV after the loss of critical sensors in the SAS(stability augmentation system) and to provide reference information for a tie-breaking condition at which an ILM(in-line monitor) cannot distinguish the faulty channel between two operating ones, the Kalman filter approach is investigated.

Development of Vehicle Longitudinal Controller Fault Detection Algorithm based on Driving Data for Autonomous Vehicle (자율주행 자동차를 위한 주행 데이터 기반 종방향 제어기 고장 감지 알고리즘 개발)

  • Yoon, Youngmin;Jeong, Yonghwan;Lee, Jongmin;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.2
    • /
    • pp.11-16
    • /
    • 2019
  • This paper suggests an algorithm for detecting fault of longitudinal controller in autonomous vehicles. Guaranteeing safety in fault situation is essential because electronic devices in vehicle are dependent each other. Several methods like alarm to driver, ceding control to driver, and emergency stop are considered to cope with fault. This research investigates the fault monitoring process in fail-safe system, for controller which is responsible for accelerating and decelerating control in vehicle. Residual is computed using desired acceleration control command and actual acceleration, and detection of its abnormal increase leads to the decision that system has fault. Before computing residual for controller, health monitoring process of acceleration signal is performed using hardware and analytic redundancy. In fault monitoring process for controller, a process model which is fitted using driving data is considered to improve the performance. This algorithm is simulated via MATLAB tool to verify performance.