• Title/Summary/Keyword: Analysis of means

Search Result 10,011, Processing Time 0.043 seconds

A Study on the Improvement of the Batch-means Method in Simulation Analysis (모의실험 분석중 구간평균기법의 개선을 위한 연구)

  • 천영수
    • Journal of the Korea Society for Simulation
    • /
    • v.5 no.2
    • /
    • pp.59-72
    • /
    • 1996
  • The purpose of this study is to make an improvement to the batch-means method, which is a procedure to construct a confidence interval(c.i.) for the steady-state process mean of a stationary simulation output process. In the batch-means method, the data in the output process are grouped into batches. The sequence of means of the data included in individual batches is called a batch-menas process and can be treated as an independently and identically distributed set of variables if each batch includes sufficiently large number of observations. The traditional batch-means method, therefore, uses a batch size as large as possible in order to. destroy the autocovariance remaining in the batch-means process. The c.i. prodedure developed and empirically tested in this study uses a small batch size which can be well fitted by a simple ARMA model, and then utilizes the dependence structure in the fitted model to correct for bias in the variance estimator of the sample mean.

  • PDF

K-means Clustering using a Center Of Gravity for grid-based sample

  • Park, Hee-Chang;Lee, Sun-Myung
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2004.04a
    • /
    • pp.51-60
    • /
    • 2004
  • K-means clustering is an iterative algorithm in which items are moved among sets of clusters until the desired set is reached. K-means clustering has been widely used in many applications, such as market research, pattern analysis or recognition, image processing, etc. It can identify dense and sparse regions among data attributes or object attributes. But k-means algorithm requires many hours to get k clusters that we want, because it is more primitive, explorative. In this paper we propose a new method of k-means clustering using a center of gravity for grid-based sample. It is more fast than any traditional clustering method and maintains its accuracy.

  • PDF

DNA Marker Mining of BMS1167 Microsatellite Locus in Hanwoo Chromosome 17

  • Lee, Jea-Young;Lee, Yong-Won;Kwon, Jae-Chul
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.325-333
    • /
    • 2006
  • We describe tests for detecting and locating quantitative traits loci (QTL) for traits in Hanwoo. Lod scores and a permutation test have been described. From results of a permutation test to detect QTL, we select major DNA markers of BMS1167 microsatellite locus in Hanwoo chromosome 17 for further analysis. K-means clustering analysis applied to four traits and eight DNA markers in BMS1167 resulted in three cluster groups. We conclude that the major DNA markers of BMS1167 microsatellite locus in Hanwoo chromosome 17 are markers 100bp, 108bp and 110bp.

  • PDF

A Major DNA Marker Mining of BMS941 Microsatellite Locus in Hanwoo Chromosome 17

  • Lee, Jea-Young;Lee, Yong-Won
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.913-921
    • /
    • 2005
  • We describe tests for detecting and locating quantitative traits loci (QTL) for traits in Hanwoo. Lod scores and a permutation test have been described. From results of a permutation test to detect QTL, we select major DNA markers of BMS941 microsatellite locus in Hanwoo chromosome 17 for further analysis. K-means clustering analysis applied to four traits and eight DNA markers in BMS941 resulted in three cluster groups. We conclude that the major DNA markers of BMS941 microsatellite locus in Hanwoo chromosome 17 are markers 80bp, 85bp 90bp and 105bp.

  • PDF

K-means Clustering for Environmental Indicator Survey Data

  • Park, Hee-Chang;Cho, Kwang-Hyun
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.185-192
    • /
    • 2005
  • There are many data mining techniques such as association rule, decision tree, neural network analysis, clustering, genetic algorithm, bayesian network, memory-based reasoning, etc. We analyze 2003 Gyeongnam social indicator survey data using k-means clustering technique for environmental information. Clustering is the process of grouping the data into clusters so that objects within a cluster have high similarity in comparison to one another. In this paper, we used k-means clustering of several clustering techniques. The k-means clustering is classified as a partitional clustering method. We can apply k-means clustering outputs to environmental preservation and environmental improvement.

  • PDF

The Material Values, Attitudes toward Money, and Money Use Behavior of Female Collegians (여자대학생의 물질주의 가치성향과 화폐에 대한 태도 및 금전사용행동)

  • 홍은실;황덕순;한경미
    • Journal of Families and Better Life
    • /
    • v.19 no.1
    • /
    • pp.143-158
    • /
    • 2001
  • The purpose of this study was to examine the influences of the material values, attitudes toward money, and the background variables to the money use behavior of female collegians. The samples were selected from 541 female collegians. Cronbach$\alpha$, One-way ANOVA, Duncan test, Multiple regression, Path analysis were used as statistical analysis. The results were summarized as follows : Resulting from multiple regression analysis, the money use behavior of female collegians had the positive linear relationships with the variables such as mothers level of education, material values, and 3 money attitude - the means of security, the symbol of anxiety, the means of pleasure - in five money attitude dimensions. The most influential variable was money attitude of the means of security.

  • PDF

Utilizing Principal Component Analysis in Unsupervised Classification Based on Remote Sensing Data

  • Lee, Byung-Gul;Kang, In-Joan
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.33-36
    • /
    • 2003
  • Principal component analysis (PCA) was used to improve image classification by the unsupervised classification techniques, the K-means. To do this, I selected a Landsat TM scene of Jeju Island, Korea and proposed two methods for PCA: unstandardized PCA (UPCA) and standardized PCA (SPCA). The estimated accuracy of the image classification of Jeju area was computed by error matrix. The error matrix was derived from three unsupervised classification methods. Error matrices indicated that classifications done on the first three principal components for UPCA and SPCA of the scene were more accurate than those done on the seven bands of TM data and that also the results of UPCA and SPCA were better than those of the raw Landsat TM data. The classification of TM data by the K-means algorithm was particularly poor at distinguishing different land covers on the island. From the classification results, we also found that the principal component based classifications had characteristics independent of the unsupervised techniques (numerical algorithms) while the TM data based classifications were very dependent upon the techniques. This means that PCA data has uniform characteristics for image classification that are less affected by choice of classification scheme. In the results, we also found that UPCA results are better than SPCA since UPCA has wider range of digital number of an image.

  • PDF

Multiscale Clustering and Profile Visualization of Malocclusion in Korean Orthodontic Patients : Cluster Analysis of Malocclusion

  • Jeong, Seo-Rin;Kim, Sehyun;Kim, Soo Yong;Lim, Sung-Hoon
    • International Journal of Oral Biology
    • /
    • v.43 no.2
    • /
    • pp.101-111
    • /
    • 2018
  • Understanding the classification of malocclusion is a crucial issue in Orthodontics. It can also help us to diagnose, treat, and understand malocclusion to establish a standard for definite class of patients. Principal component analysis (PCA) and k-means algorithms have been emerging as data analytic methods for cephalometric measurements, due to their intuitive concepts and application potentials. This study analyzed the macro- and meso-scale classification structure and feature basis vectors of 1020 (415 male, 605 female; mean age, 25 years) orthodontic patients using statistical preprocessing, PCA, random matrix theory (RMT) and k-means algorithms. RMT results show that 7 principal components (PCs) are significant standard in the extraction of features. Using k-means algorithms, 3 and 6 clusters were identified and the axes of PC1~3 were determined to be significant for patient classification. Macro-scale classification denotes skeletal Class I, II, III and PC1 means anteroposterior discrepancy of the maxilla and mandible and mandibular position. PC2 and PC3 means vertical pattern and maxillary position respectively; they played significant roles in the meso-scale classification. In conclusion, the typical patient profile (TPP) of each class showed that the data-based classification corresponds with the clinical classification of orthodontic patients. This data-based study can provide insight into the development of new diagnostic classifications.

A dynamic analysis of three-dimensional functionally graded beams by hierarchical models

  • Giunta, Gaetano;Koutsawa, Yao;Belouettar, Salim;Calvi, Adriano
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.637-657
    • /
    • 2014
  • This paper presents a dynamic analysis of three-dimensional beams. Structures made of functionally graded materials are considered. Several higher-order as well as classical theories are derived by means of a compact notation for the a-priori expansion order of the displacement field over the beam cross-section. The governing differential equations and boundary conditions are obtained in a condensed nuclear form that does not depend on the kinematic hypotheses. The problem is, then, exactly solved in space by means of a Navier-type solution, whereas time integration is performed by means of Newmark's solution scheme. Slender and short simply supported beams are investigated. Results are validated towards three-dimensional FEM results obtained via the commercial software ANSYS. Numerical investigations show that good accuracy can be obtained through the proposed formulation provided that the appropriate expansion order is considered.

Clustering-based Monitoring and Fault detection in Hot Strip Roughing Mill (군집기반 열간조압연설비 상태모니터링과 진단)

  • SEO, MYUNG-KYO;YUN, WON YOUNG
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.1
    • /
    • pp.25-38
    • /
    • 2017
  • Purpose: Hot strip rolling mill consists of a lot of mechanical and electrical units. In condition monitoring and diagnosis phase, various units could be failed with unknown reasons. In this study, we propose an effective method to detect early the units with abnormal status to minimize system downtime. Methods: The early warning problem with various units is defined. K-means and PAM algorithm with Euclidean and Manhattan distances were performed to detect the abnormal status. In addition, an performance of the proposed algorithm is investigated by field data analysis. Results: PAM with Manhattan distance(PAM_ManD) showed better results than K-means algorithm with Euclidean distance(K-means_ED). In addition, we could know from multivariate field data analysis that the system reliability of hot strip rolling mill can be increased by detecting early abnormal status. Conclusion: In this paper, clustering-based monitoring and fault detection algorithm using Manhattan distance is proposed. Experiments are performed to study the benefit of the PAM with Manhattan distance against the K-means with Euclidean distance.