• Title/Summary/Keyword: Analog performance

Search Result 688, Processing Time 0.03 seconds

A 2.4 GHz Bio-Radar System with Small Size and Improved Noise Performance Using Single Circular-Polarized Antenna and PLL (하나의 원형 편파 안테나와 PLL을 이용하여 소형이면서도 개선된 잡음 성능을 갖는 2.4 GHz 바이오 레이더 시스템)

  • Jang, Byung-Jun;Park, Jae-Hyung;Yook, Jong-Gwan;Moon, Jun-Ho;Lee, Kyoung-Joung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1325-1332
    • /
    • 2009
  • In this paper, we design a 2.4 GHz bio-radar system that can detect human heartbeat and respiration signals with small size and improved noise performance using single circular-polarized antenna and phase-locked loop. The demonstrated bio-radar system consists of single circular-polarized antenna with $90^{\circ}$ hybrid, low-noise amplifier, power amplifier, voltage-controlled oscillator with phase-locked loop circuits, quadrature demodulator and analog circuits. To realize compact size, the printed annular ring stacked microstrip antenna is integrated on the transceiver circuits, so its dimension is just $40\times40mm^2$. Also, to improve signal-to-noise-ratio performance by phase noise due to transmitter leakage signal, the phase-locked loop circuit is used. The measured results show that the heart rate and respiration accuracy was found to be very high for the distance of 50 cm without the additional digital signal processing.

Development of a battery management system(BMS) simulator for electric vehicle(EV) cars (EV용 배터리 관리시스템(BMS) 시뮬레이터 개발)

  • Park, Chan-Hee;Kim, Sang-Jung;Hwang, Ho-Suk;Lee, Hee-Gwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2484-2490
    • /
    • 2012
  • This study reports on the development and performance verification of cell simulation boards of simulator and the embedded program for board control of the battery management system (BMS) of electric vehicle (EV) cars, which manages the next-generation automotive lithium-ion battery pack. Here, we have improved the speed of the simulator by using operational (OP) amplifier and transistors that were connected in series. In addition, using a digital analog converter (DAC) in each channel, we have improved the performance by channel-to-channel isolation (isolation) as compared to the traditional methods. Furthermore, by constructing a current-limiting protection circuit, one can be protected from disturbance and, by utilizing a precision shunt resistor for the current sensor, we have increased the precision of the current control. In order to verify the performance of the developed simulator, we have performed the experiment 10 times, with values ranging from 0.5 V to 5 V, and a voltage drop step of 0.5 V. Significance analysis of experimental data, and repeatability tests were performed, showing an average standard deviation of 0.001~0.004 V, indicating high repeatability and high statistical significance of the current method and system.

An Evaluation Method of X-ray Imaging System Resolution for Non-Engineers (비공학도를 위한 X-ray 영상촬영 시스템 해상력 평가 방법)

  • Woo, Jung-Eun;Lee, Yong-Geum;Bae, Seok-Hwan;Kim, Yong-Gwon
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.309-314
    • /
    • 2012
  • Nowadays, digital Radiography (DR) systems are widely used in clinical sites and substitute the analog-film x-ray imaging systems. The resolution of DR images depends on several factors such as characteristic contrast and motion of the object, the focal spot size and the quality of x-ray beam, x-ray scattering, the performance of the DR detector (x-ray conversion efficiency, the intrinsic resolution). The DR detector is composed of an x-ray capturing element, a coupling element and a collecting element, which systematically affect the system resolution. Generally speaking, the resolution of a medical imaging system is the discrimination ability of anatomical structures. Modulation transfer function (MTF) is widely used for the quantification of the resolution performance for an imaging system. MTF is defined as the frequency response of the imaging system to the input of a point spread function and can be obtained by doing Fourier transform of a line spread function, which is extracted from a test image. In clinic, radiologic technologists, who are in charge of system maintenance and quality control, have to evaluate or make routine check on their imaging system. However, it is not an easy task for the radiologic technologists to measure MTF accurately due to lack of their engineering and mathematical backgrounds. The objective of this study is to develop and provide for radiologic technologists a medical system imaging evaluation tool, so that they can measure and quantify system performance easily.

GNSS Software Receivers: Sampling and jitter considerations for multiple signals

  • Amin, Bilal;Dempster, Andrew G.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.385-390
    • /
    • 2006
  • This paper examines the sampling and jitter specifications and considerations for Global Navigation Satellite Systems (GNSS) software receivers. Software radio (SWR) technologies are being used in the implementation of communication receivers in general and GNSS receivers in particular. With the advent of new GPS signals, and a range of new Galileo and GLONASS signals soon becoming available, GNSS is an application where SWR and software-defined radio (SDR) are likely to have an impact. The sampling process is critical for SWR receivers, where it occurs as close to the antenna as possible. One way to achieve this is by BandPass Sampling (BPS), which is an undersampling technique that exploits aliasing to perform downconversion. BPS enables removal of the IF stage in the radio receiver. The sampling frequency is a very important factor since it influences both receiver performance and implementation efficiency. However, the design of BPS can result in degradation of Signal-to-Noise Ratio (SNR) due to the out-of-band noise being aliased. Important to the specification of both the ADC and its clocking Phase- Locked Loop (PLL) is jitter. Contributing to the system jitter are the aperture jitter of the sample-and-hold switch at the input of ADC and the sampling-clock jitter. Aperture jitter effects have usually been modeled as additive noise, based on a sinusoidal input signal, and limits the achievable Signal-to-Noise Ratio (SNR). Jitter in the sampled signal has several sources: phase noise in the Voltage-Controlled Oscillator (VCO) within the sampling PLL, jitter introduced by variations in the period of the frequency divider used in the sampling PLL and cross-talk from the lock line running parallel to signal lines. Jitter in the sampling process directly acts to degrade the noise floor and selectivity of receiver. Choosing an appropriate VCO for a SWR system is not as simple as finding one with right oscillator frequency. Similarly, it is important to specify the right jitter performance for the ADC. In this paper, the allowable sampling frequencies are calculated and analyzed for the multiple frequency BPS software radio GNSS receivers. The SNR degradation due to jitter in a BPSK system is calculated and required jitter standard deviation allowable for each GNSS band of interest is evaluated. Furthermore, in this paper we have investigated the sources of jitter and a basic jitter budget is calculated that could assist in the design of multiple frequency SWR GNSS receivers. We examine different ADCs and PLLs available in the market and compare known performance with the calculated budget. The results obtained are therefore directly applicable to SWR GNSS receiver design.

  • PDF

Effect of Detector-Misalignment on TOF-PET Detector Performance (검출기 정렬 오차가 TOF-PET 검출기의 성능에 미치는 영향성 평가)

  • Yang, Jingyu;Kang, Jihoon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.6
    • /
    • pp.841-846
    • /
    • 2019
  • Effect of misalignment on the performance was evaluated for the development of time-of-flight(TOF)-PET detector. A pair of TOF-PET detector consists of Lutetium-yttrium oxyorthosilicate(LYSO) scintillation crystal with a volume of 3 mm × 3 mm × 20 mm and Geiger-mode avalanche photodiodes(GAPD) photo-sensor with a active area of 3.07 mm × 3.07 mm. Analog output signals from TOF-PET detector were sent to the pre-amplifier and then fed into the gain adjust circuit for achievement of gain homogeneity for each detector. The amplified signals were recorded and digitized by data acquisition system based on oscilloscope. The effect of the detector misalignment between LYSO and GAPD was examined for four different alignment offsets of 0.0 mm, 0.5 mm, 1.0 mm and 1.5 mm for a pair of TOF-PET detector. The photopeak position decreased from ~400 mV to ~250 mV with increasing detector misalignment. the energy resolution and time resolution were degraded from 11.6% to 16.2%, and from 477 ps to 632 ps, respectively. This study demonstrated that PET detector performance was degraded considerably depending on the detector misalignment, which would be a critical issue for the development of TOF-PET detector.

A Study on the Test Results of 32 Gbps Observing System for Wideband VLBI Observation (광대역 VLBI 관측을 위한 32Gbps 관측장비의 시험결과 고찰)

  • Oh, Se-Jin;Yeom, Jae-Hwan;Roh, Duk-Gyoo;Jung, Dong-Kyu;Harada, Kenichi;Takezawa, Kosuke
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.18 no.1
    • /
    • pp.13-20
    • /
    • 2017
  • In this paper, we evaluate the basic test results of the 32 Gbps observational equipment introduced as the back-end system for the wideband VLBI (Very Long Baseline Interferometry) observation of KVN (Korean VLBI Network). Radio astronomers want to make a large radio telescope that has excellent performance in order to observe the superfine structure of a celestial body, but a lot of money is needed. Therefore, in order to increase the sensitivity, the performance improvement of the receiving system and the method of observing the wide frequency bandwidth are introduced. To do this, we adopted a wideband sampling method for converting analog signals to digital with ultra-fast speeds and a wideband sampler for performing digital filtering in order to observe a wide observational frequency bandwidth. The wideband sampler (OCTAD-K) supports up to 16 Gsps-2bits sampling and supports a variety of observational bandwidth using digital filtering techniques. In particular, it is designed to support KVN's 4-frequency simultaneous observation system and VERA(VLBI Exploration of Radio Astrometry)'s 2-beam observation system. It can also support polKVN(Korean VLBI Network), KaVA(KVN and VERA Array), 32Gbps Direct Sampler, Digital Filter, Widebandarization observations and supports the standard VDIF(VLBI Data Interchange Format) format of observed data. In this paper, the performance of the system and the problem solving are described in detail after performing the factory inspection and field test before the system is introduced.

  • PDF

Effect of Passive Layer to Improve Performance of Digital Dosimeter in Brachytherapy (방사선 근접치료 디지털 선량계의 성능 개선을 위한 Passive Layer의 효과)

  • Han, Moo-Jae;Yang, Seung-Woo;Park, Sung-Kwang
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.715-721
    • /
    • 2021
  • In radiation brachytherapy, the wrong source location may cause excessive dose to normal tissue. Therefore, research on digital dosimeters is being made to replace the analog detection method. Therefore, in this study, a lead (II) oxide (PbO) dosimeter applied with a passive layer (PL) was fabricated as a basic study to improve the dosimeter performance. Afterwards, reproducibility, linearity, and distance dependence were evaluated to analyze the performance of the Ir-192 source under irradiation conditions. The reproducibility of the PL-PbO dosimeter was 0.40%, which satisfies the evaluation criteria of 1.5%, and showed improved results compared to the PbO dosimeter. Linear function R2 showed excellent results as 0.9995, and slope analysis through regression analysis of the linear function was excellent in PL-PbO. The distance dependence of the PL-PbO dosimeter was +0.599 higher than that of PbO when the slope obtained through regression analysis of the power function was compared with the inverse square value. This study presents the effects and measurement variables according to the measurement configuration of the solid-state dosimeter, and can be used in various radiation detection fields.

Design of Signal Quality Indicator(SQI) for the Verification of the Communication Channel Condition in Guided Flight Systems (유도비행체계 내부 통신채널 상태 검사를 위한 신호 품질 지시자 설계)

  • Hong, Eonpyo;Jeong, Sangmoon;Gong, Minsik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.12
    • /
    • pp.1049-1055
    • /
    • 2018
  • This paper proposes the Signal Quality Indicator (SQI) to certify the wired communication channels connected between sub-systems embedded in guided flight systems. The communication signals can be distorted due to the poor interconnections of wired channels, the interference from the signals passing through the adjacent routed channels, and additive white Gaussian noises. As the ways to find out the condition of the communication channels, we present the Hamming distance based SQI (H-SQI) and the Euclidean distance based SQI (E-SQI). Two SQIs are compared in terms of the SQI resolution performance and the required number of hardware resources for implementations. The E-SQI requires the 10 times FPGA resources and an additional analog-digital converter over the H-SQI in spite of its outstanding SQI resolution performance. Moreover, the H-SQI could have the enough SQI resolution performance to find out the channel condition by increasing the oversampling rate, so the H-SQI is the more adequate than the E-SQI for the SQI of the guided flight systems.

Performance Evaluation of Lead (II) Oxide Dosimeter for Digital Quality Assurance in Brachytherapy (방사선 근접치료의 디지털 정도관리를 위한 Lead (II) Oxide 선량계 성능 평가)

  • Han, Moo-Jae;Yang, Seung-Woo;Park, Sung-Kwang
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.429-435
    • /
    • 2021
  • In intracavitary radiotherapy, incorrect location of the source can cause excessive dose to normal tissue, so it is essential to evaluate the location accuracy of the source. In this study, basic research was performed on digital line dosimeter based on lead (II) oxide (PbO) to improve analog verification method. Therefore, a polycrystalline PbO unit cell dosimeter was manufactured and the measurement performance for Ir-192 sources was evaluated. As a result, the reproducibility satisfies the evaluation criteria of 1.5% with a relative standard deviation of 0.85%. Linearity showed excellent results with a linear coefficient of R2 of 0.9998. In the case of distance dependence evaluation, the power function R2 showed 0.9855 for PbO and 0.9974 for diode, and the overall average difference was 1.66% for PbO and 2.18% for diode. This study presents the basic detection performance of the polycrystalline PbO dosimeter for the Ir-192 source and can provide basic data in the field of radiation measurement.

Development of Fuzzy Inference Engine for Servo Control Using $\alpha$-level Set Decomposition ($\alpha$ -레벨집합 분해에 의한 서보제어용 퍼지 추론 연산회로의 개발)

  • 홍순일;이요섭
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.50-56
    • /
    • 2001
  • As the fuzzy control is applied to servo system, the hardware implementation of the fuzzy information systems requires the high speed operations, short real time control and the small size systems. The aims of this study is to develop hardware of the fuzzy information systems to be apply to servo system. In this paper, we propose a calculation method of approximate reasoning for fuzzy control based on $\alpha$ -level set decomposition of fuzzy sets by quantize $\alpha$ -cuts. This method can be easily implemented with analog hardware. The influence of quantization Bevels of $\alpha$-cuts on output from fuzzy inference engine is investigated. It is concluded that 4 quantization levels give sufficient result for fuzzy control performance of dc servo system. The hardware implementation of proposed operation method and of the defuzzification by gravity center method which is directly converted to PWM actuating signal is also presented. It is verified useful with experiment for dc servo system.

  • PDF