• Title/Summary/Keyword: Analog Materials

Search Result 183, Processing Time 0.022 seconds

A Study on the Design of Glass Fiber Fabric Reinforced Plastic Circuit Analog Radar Absorber Structure Using Machine Learning and Deep Learning Techniques (머신러닝 및 딥러닝 기법을 활용한 유리섬유 직물 강화 복합재 적층판형 Circuit Analog 전파 흡수구조 설계에 대한 연구)

  • Jae Cheol Oh;Seok Young Park;Jin Bong Kim;Hong Kyu Jang;Ji Hoon Kim;Woo-Kyoung Lee
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.92-100
    • /
    • 2023
  • In this paper, a machine learning and deep learning model for the design of circuit analog (CA) radar absorbing structure with a cross-dipole pattern on a glass fiber fabric reinforced plastic is presented. The proposed model can directly calculate reflection loss in the Ku-band (12-18 GHz) without three-dimensional electromagnetic numerical analysis based on the geometry of the Cross-Dipole pattern. For this purpose, the optimal learning model was derived by applying various machine learning and deep learning techniques, and the results calculated by the learning model were compared with the electromagnetic wave absorption characteristics obtained by 3D electromagnetic wave numerical analysis to evaluate the comparative advantages of each model. Most of the implemented models showed similar calculated results to the numerical results, but it was found that the Fully-Connected model could provide the most similar calculated results.

A 1.2 V 12 b 60 MS/s CMOS Analog Front-End for Image Signal Processing Applications

  • Jeon, Young-Deuk;Cho, Young-Kyun;Nam, Jae-Won;Lee, Seung-Chul;Kwon, Jong-Kee
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.717-724
    • /
    • 2009
  • This paper describes a 1.2 V 12 b 60 MS/s CMOS analog front-end (AFE) employing low-power and flexible design techniques for image signal processing. An op-amp preset technique and programmable capacitor array scheme are used in a variable gain amplifier to reduce the power consumption with a small area of the AFE. A pipelined analog-to-digital converter with variable resolution and a clock detector provide operation flexibility with regard to resolution and speed. The AFE is fabricated in a 0.13 ${\mu}m$ CMOS process and shows a gain error of 0.68 LSB with 0.0352 dB gain steps and a differential/integral nonlinearity of 0.64/1.58 LSB. The signal-to-noise ratio of the AFE is 59.7 dB at a 60 MHz sampling frequency. The AFE occupies 1.73 $mm^2$ and dissipates 64 mW from a 1.2 V supply. Also, the performance of the proposed AFE is demonstrated by an implementation of an image signal processing platform for digital camcorders.

A Study on PID Control Law's Realization for 2-Stage Proportional Pressure Control Valve with Analog Controller (아날로그 PID 제어기를 이용한 2단 비례 압력 제어 밸브의 실현에 관한 연구)

  • Yun, S.N.;Jeong, H.H.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.58-61
    • /
    • 2012
  • The customers who used the hydroulic system desire the product that has more detailed specification quickly during the industrial technology is developed. Every researcher try to reduce the developed period and to satisfy the customers' desire. Lot's of simulation software and hardware already was used to be satisfied those purpose. But these kind of equipment need a lot of cost to set up and technical knowledge to drive that system. This paper concerns about analog PID controller that can be assembled with a few resistor, condenser and optional amplifier and doesn't need technical knowledge to drive. At the first, the plant was modeled mathematically to design the analog PID controller's circuit. After that, PID controller's parameter was selected by customers' desire. Finally, the analog PID controller's circuit was assembled from the control law. The circuit's availability was confirmed by step response test in the controlled system.

Education Method for Programming through Physical Computing based on Analog Signaling of Arduino (아두이노 아날로그 신호 기반 피지컬 컴퓨팅을 통한 프로그래밍 교육 방법)

  • Hur, Kyeong;Sohn, Won-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.12
    • /
    • pp.1481-1490
    • /
    • 2019
  • Arduino makes it easy to connect objects and computers. As a result, programming learning using physical computing has been proposed as an effective alternative to SW training for beginners. In this paper, we propose an Arduino-based physical computing education method that can be applied to basic programming subjects. To this end, we propose a basic programming training method based on Arduino analog signals. Currently, physical computing courses focus on digital control when connecting input sensors and output devices in Arduino. However, the contents of programming education using analog signals of Arduino boards are insufficient. In this paper, we proposed and tested the teaching method used for programming education using low-cost materials used for Arduino analog signal-based computing.

The Effect of Clarified Mapping Strategy and Placement of Analog on Middle School Students' Conceptual Understanding in Science (대응 명료화 전략 및 비유물의 제시 시기가 중학생들의 과학 개념 이해에 미치는 효과)

  • Noh, Tae-Hee;Kim, Chang-Min;Kwon, Hyeok-Soon
    • Journal of The Korean Association For Science Education
    • /
    • v.19 no.1
    • /
    • pp.107-116
    • /
    • 1999
  • The effects of clarified mapping strategy and placement of analog on middle school students' conceptual understanding were investigated. According to the usage of clarified mapping strategy and the sequence in presenting analogy, four types of learning materials were developed and pilot tested. Prior to the treatment, the field dependence-independence test was administered and a previous achievement test scores were obtained. The scores were used as blocking variables. The learning materials were read by randomly assigned middle school students (N=111), and the conceptions test was administered immediately and four weeks later. In the recall problems of immediate and retention test, there were no significant differences. In the application problems of immediate and retention test, however, the students learned with clarified mapping strategy scored significantly higher than those with analog-only. Field-independent students learned with clarified mapping strategy scored significantly higher in the immediate application than those with analog-only, and higher-level students learned with clarified mapping strategy scored significantly higher in the retention application than those with analog-only. In the immediate application, higher-level students learned analog first with clarified mapping strategy scored significantly higher in the immediate application than those learned target concept first with clarified mapping strategy. However, lower-level students learned target concept first with clarified mapping strategy scored significantly higher than those learned analog first with clarified mapping strategy.

  • PDF

A Study on Voltammetry System Design for Realizing High Sensitivity Nano-Labeled Sensor of Detecting Heavy Metals (중금속 검출용 고감도 나노표지센서 구현을 위한 볼타메트리 시스템 설계 연구)

  • Kim, Ju-Myoung;Rhee, Chang-Kyu
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.297-303
    • /
    • 2012
  • In this study, voltammetry system for realizing high sensitivity nano-labeled sensor of detecting heavy metals was designed, and optimal system operating conditions were determined. High precision digital to analog converter (DAC) circuit was designed to control applied unit voltage at working electrode and analog to digital converter (ADC) circuit was designed to measure the current range of $0.1{\sim}1000{\mu}A$ at counter electrode. Main control unit (MCU) circuit for controlling voltammetry system with 150 MHz clock speed, main memory circuit for the mathematical operation processing of the measured current value and independent power circuit for analog/digital circuit parts to reduce various noise were designed. From result of voltammetry system operation, oxidation current peaks which are proportional to the concentrations of Zn, Cd and Pb ions were found at each oxidation potential with high precision.

The Effect of an Instruction Using Analog Systematically in Middle School Science Class (중학교 과학 수업에서 비유물을 체계적으로 사용한 수업의 효과)

  • Noh, Tae-Hee;Kwon, Hyeok-Soon;Lee, Seon-Uk
    • Journal of The Korean Association For Science Education
    • /
    • v.17 no.3
    • /
    • pp.323-332
    • /
    • 1997
  • In order to use analog more systematically in science class, an instructional model was designed on the basis of analogical reasoning processes (encoding, inference, mapping, application, and response) in the Sternberg's component process theory. The model has five phases (introducing target context, cue retrieval of analog context, mapping similarity and drawing target concept, application, and elaboration), and the instructional effects of using the model upon students' comprehension of science concepts and motivation level of learning were investigated. The treatment and control groups (1 class each) were selected from 8th-grade classes and taught about chemical change and chemical reaction for the period of 10 class hours. The treatment group was taught with the materials based on the model, while the control group was taught in traditional instruction without using analog. Before the instructions, modified versions of the Patterns of Adaptive Learning Survey and the Group Assessment of Logical Thinking were administered, and their scores were used as covariates for students' conceptions and motivational level of learning, respectively. Analogical reasoning ability test was also administered, and its score was used as a blocking variable. After the instructions, students' conceptions were measured by a researcher-made science conception test, and their motivational level of learning was measured by a modified version of the Instructional Materials Motivation Scale. The results indicated that the adjusted mean score of the conception test for the treatment group was significantly higher than that of the control group at .01 level of significance. No significant interaction between the instruction and the analogical reasoning ability was found. Although the motivational level of learning for the treatment group was higher than that for the control group, the difference was found to be statistically insignificant. Educational implications are discussed.

  • PDF

Current technologies, regulation, and future perspective of animal product analogs - A review

  • Seung Yun Lee;Da Young Lee;Jae Won Jeong;Jae Hyeon Kim;Seung Hyeon Yun;Ermie Jr. Mariano;Juhyun Lee;Sungkwon Park;Cheorun Jo;Sun Jin Hur
    • Animal Bioscience
    • /
    • v.36 no.10
    • /
    • pp.1465-1487
    • /
    • 2023
  • The purpose of this study was to investigate the recent development of meat analog, industrialization, and the related legal changes worldwide. Summarizing the current status of the industrialization of meat analog, studies on plant-based meat, mycoprotein, and edible insects were mainly conducted to investigate their sensory properties (texture, taste, flavor, and color resembling meat), nutritional and safety evaluations, acquisition method of meat alternatives, and commercialization. Cultured meat is mainly studied for developing muscle satellite cell acquisition and support techniques or materials for the formation of structures. However, these technologies have not reached the level for active industrialization. Even though there are differences in the food categories and labeling between countries, it is common to cause confusion or to relay false information to consumers; therefore, it is important to provide accurate information. In this study, there were some differences in the food classification and food definition (labeling) contents for each country and state depending on the product shape or form, raw materials, and ingredients. Therefore, this study can provide information about the current research available on meat alternatives, improve regulation, and clarify laws related to the meat analog industry, which can potentially grow alongside the livestock industry.

Wireless Digital Packet Communication and Analog Image Communication Systems for Fire Fighting Robot (소방로봇 원격제어를 위한 무선패킷 디지털 데이터통신 및 아날로그 영상통신 기법)

  • Jung, Jik-Han;Kim, Byung-Wook;Park, Sang-Uk;Park, Dong-Jo;Park, Jung-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.121-127
    • /
    • 2007
  • Frequent occurrences of a fire cause tremendous loss of human lives and their property. Recently, in order to cope with such catastrophic accidents, researches on fire-fighting robots are carried out in developed countries. Under the dangerous situations, it is sometimes impossible for fire-fighting men to access the firing place because of explosive materials, smoke, high temperature and so on. In such an environment, fire-fighting robots can be useful to extinguish the fire. It is usually very dangerous place where fire-fighting robots operate. Hence, these robots should be controlled by remote users who are for away from the firing place exploiting remote communication systems. This paper considers the communication systems between fire-fighting robots and remote users. The communication systems consist of two parts; digital packet communication systems and analog image communication systems. Digital packet communication systems transfer data packets in order to control fire-fighting robots and to check the state of the fire-fighting robots. Remote users watch the video around the fire-fighting robots by exploiting the analog image communication systems. In the future, the more prosperous the commercial communication network systems will be, the more evolved the communication systems for fire-fighting robots are.

Current Technologies and Future Perspective in Meat Analogs Made from Plant, Insect, and Mycoprotein Materials: A Review

  • Da Young Lee;Seung Yun Lee;Seung Hyeon Yun;Juhyun Lee;Ermie Mariano Jr;Jinmo Park;Yeongwoo Choi;Dahee Han;Jin Soo Kim;Sun Jin Hur
    • Food Science of Animal Resources
    • /
    • v.44 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • This study reviewed the current data presented in the literature on developing meat analogs using plant-, insect-, and protein-derived materials and presents a conclusion on future perspectives. As a result of this study, it was found that the current products developed using plant-, insect-, and mycoprotein-derived materials still did not provide the quality of traditional meat products. Plant-derived meat analogs have been shown to use soybean-derived materials and beta-glucan or gluten, while insect-derived materials have been studied by mixing them with plant-derived materials. It is reported that the development of meat analogs using mycoprotein is somewhat insufficient compared to other materials, and safety issues should also be considered. Growth in the meat analog market, which includes products made using plant-, insect-, and mycoprotein-derived materials is reliant upon further research being conducted, as well as increased efforts for it to coexist alongside the traditional livestock industry. Additionally, it will become necessary to clearly define legal standards for meat analogs, such as their classification, characteristics, and product-labeling methods.