• Title/Summary/Keyword: Analcime

Search Result 18, Processing Time 0.024 seconds

HYDROTHERMAL MODIFICATIONS OF ZEOLITE (제올라이트의 수열처리에 관한 연구)

  • YunJongKim;TaikNamKim;IllYongKim;YoungJunKim;SeungWoLee
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.4
    • /
    • pp.251-256
    • /
    • 2001
  • Korean natura1 zeolite with fe1dspar and illite as impurities was purified by an air c1assification method. X-ray powder diffraction ana1yses showed that the air c1assification effectively separated zeolite and impurities, and reduce the amount of impurity of the natura1 zeolite. The zeolite with air c1assification was treated with 1N NaOH solutions at temperatures at 100, 150, 200 ℃ for 17hours. The obtained hydrotherma1 treatment of phase change to philli1site and ana1cime from mordenite and clinopti10lite.

  • PDF

Adsorption of Lead Ion by Zeolites Synthesized from Jeju Scoria (제주 스코리아로부터 합성된 제올라이트에 의한 납이온 흡착)

  • Kam, Sang-Kyu;Hyun, Sung-Su;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.20 no.11
    • /
    • pp.1437-1445
    • /
    • 2011
  • The adsorption performance of lead ion was studied using five zeolites (Na-P1, sodalite (SOD), analcime (ANA), nepheline hydrate (JBW), cancrinite (CAN)) synthesized from Jeju scoria. The adsorption performances of lead ion decreased in the order of Na-P1 > SOD > ANA > JBW > CAN. These results showed that the synthetic zeolite with a higher cationic exchange capacity showed a higher adsorption performance. The uptake of lead ion by synthetic zeolites were described by Freundlich model better than Langmuir model. The adsorption kinetics of lead ion by synthetic zeolites fitted the pseudo 2nd order kinetics better than pseudo 1st order kinetics. The effective diffusion coefficients of lead ion by synthetic zeolites were ten times higher than the zeolite A synthesized from coal fly ash.

Synthesis of Zeolite From Fly Ash (석탄회를 이용한 제올라이트의 열수합성)

  • 진지영
    • Economic and Environmental Geology
    • /
    • v.32 no.6
    • /
    • pp.575-584
    • /
    • 1999
  • Through alkaline hydrothermal activation processes, zeolite minerals were synthesized from fly ashes produced at Youngwol and Boryoung power plants. The syntheses were performed in a closed teflon vessel with a teflon-coated magnetic bar for continuous stirring during the reaction periods. The experiments were caeeied out at three different reaction temperatures ($100^{\circ}C$,$200^{\circ}C$, and $250^{\circ}C$), with varying NaOH concentations (0.5~8N) and reaction time (24 to 288 hours). Mineralogical characterization of the reaction products indicated that Na-p1, analcime, and hydroxysodalite were dominant zeolites formed from the both fly ashes at the given experimental conditions, The highest amount of zoelites produced from the Youngwol and Boryoung fly ash were:60 and 45wt%for Na-P1, 70 and 45wt% for analicime, 50 and 40wt% for hydroxysodalite, respectively. A small amount of zeolite A was present in NaP-dominant dample is about 250 meq/100g. This suggests the possibility of its utilization as an ion-absorbent.

  • PDF

Estimation of Geochemical Evolution Path of Groundwaters from Crystalline Rock by Reaction Path Modeling (반응경로 모델링을 이용한 결정질암 지하수의 지구화학적 진화경로 예측)

  • 성규열;박명언;고용권;김천수
    • Economic and Environmental Geology
    • /
    • v.35 no.1
    • /
    • pp.13-23
    • /
    • 2002
  • The chemical compositions of groundwaters from the granite areas mainly belong to Ca-HC0$_{3}$ and Na-HC0$_{3}$type, and some of these belong to Ca-(CI+S0$_{4}$) and Na-(CI+S0$_{4}$) type. Spring waters and groundwaters from anorthosite areas belong to Ca-HC03 and Na-HC03 type, respectively. The result of reaction path modeling shows that the chemical compositions of aqueous solution reacted with granite evolve from initial Ca-CI type, via CaHC0$_{3}$ type, to Na-HC0$_{3}$ type. The result of rain water-anorthosite interaction is similar to evolution path of granite reaction and both of these results agree well with the field data. In the reaction path modeling of rain watergranite/anorthosite reaction, as a reaction is progressing, the activity of hydrogen ion decreases (pH increases). The concentrations of cations are controlled by the dissolution of rock-forming minerals and precipitation and re-dissolution of secondary minerals according to the pH. The continuous addition of granite causes the formation of secondary minerals in the following sequence; gibbsite plus hematite, Mn-oxide, kaolinite, silica, chlorite, muscovite (a proxy for illite here), calcite, laumontite, prehnite, and finally analcime. In the anorthosite reaction, the order of precipitation of secondary minerals is the same as with granite reaction except that there is no silica precipitation and paragonite precipitates instead of analcime. The silica and kaolinite are predominant minerals in the granite and anorthosite reactions, respectively. Total quantities of secondary minerals in the anorthosite reaction are more abundant than those in the granite reaction.

Adsorption Characteristics of Cd(II) and Cu(II) by Zeolites Synthesized from Hwangto (황토로부터 합성한 제올라이트에 의한 Cd(II) 및 Cu(II) 흡착특성)

  • 감상규;홍정연;허철구;이민규
    • Journal of Environmental Science International
    • /
    • v.12 no.7
    • /
    • pp.817-824
    • /
    • 2003
  • Various kinds of zeolites, such as analcime (ANA), cancrinite (CAN), Na-Pl and sodalite octahydrate (SOD) could be synthesized from Hwangto by hydrothermal reaction in a high-pressure vessel. The adsorption characteristics of Cu(II) and Cd(II) by Hwangto and its synthetic zeolites were investigated using the chemical and electrochemical surface parameters of these adsorbents. The heavy metal adsorptivity among the adsorbents decreased in the following sequences: Na-Pl > SOD > ANA > CAN > Hwangto. This sequence was the same with the values of surface site density (Ns) of these adsorbents and was correlated inversely with the values of pHpzc (pH of the point of zero charge) and the va]ues of K$\_$a2/(int) (intrinsic surface deprotonation constant) of the adsorbents for synthetic zeolites, i.e., the adsorbents with higher values of Ns and with lower values of pHpzc and K$\_$a2/(int) for synthetic zeolites showed higher heavy metal adsorptivity. With increasing pH, the heavy metal adsorptivity increased greatly between pHpzc and pH 6 or 7 because of the steep increase of negatively charged sites for synthetic zeolites, but for Hwangto, it increased broadly because of slow increase of negatively charged sites based on its lower surface sites.

Mineral Composition, Depositional Environment and Spectral Characteristics of Oil Shale Occurring in Dundgobi, Mongolia (몽골 돈디고비지역에서 산출되는 오일셰일의 광물조성, 퇴적환경 및 분광학적 특성)

  • Badrakh, Munkhsuren;Yu, Jaehyung;Jeong, Yongsik;Lee, Gilljae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.83-93
    • /
    • 2015
  • This study investigated genetic, mineralogical and spectral characteristics of oil shale and coal samples in Dundgobi area, Mongolia. Based the Rock/Eval and Total organic carbon (TOC) analysis, kerogen type, hydrogen quantity, thermal maturity and depositional environment were confirmed. Moreover, the mineral composition of oil shale and coal samples were analyzed by XRD and spectroscopy. The result of Rock Eval/TOC analysis revealed that the samples of Eedemt deposit are immature to mature source rocks with sufficient hydrocarbon potential, and the kerogen types were classified as Type I, Type II and Type III kerogen. On the other hand, the samples from Shine Us Khudag deposit were mature with good to very good hydrocarbon potential rocks where kengen types are defined as Type I, Type II/III and Type III kerogen. According to the carbon and sulfur contents, the depositional environment of the both sites were defined as a freshwater depositional environment. The XRD analysis revealed that the mineral composition of oil shale and coal samples were quartz, calcite, dolomite, illite, kaolinite, montmorillonite, anorthoclase, albite, microcline, orthoclase and analcime. The absorption features of oil shale samples were at 1412 nm and 1907 nm by clay minerals and water, 2206 nm by clay minerals of kaolinite and montmorillonite and 2306 nm by dolomite. It is considered that spectral characteristics on organic matter content test must be tested for oil shale exploration using remote sensing techniques.

Synthetic Study of Zeolites from Some Glassy Rocks (II) : Dissolution Behavior of Perlite and Zeolite Synthesis in Alkaline Aqueous Solution (유리질 암석으로부터 제올라이트 합성에 관한 연구(Ⅱ) : 알칼리 용액에서 진주암의 용해 거동과 제올라이트의 합성)

  • Noh, Jin-Hwan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.61-71
    • /
    • 1992
  • Through the low-temperature(60-150${\circ}C$) hydrothermal treatment of perlite with the alkaline solution at various NaOH concentrations, the mode of volcanic glass alteration and resultant zeolite formation were investigated in a closed system. At a temperature of 80${\circ}C$ and alkalinities of pH range 8 to 12, corresponding to the natural environments of diagenetic zeolite formation, only weak dissolution of perlitic glass occurs without zeolite formation despite the residence time of 100 days. Activities of Si and Al increase progressively, as a consequence of increasing pH, whereas activity ratios of Si/Al decrease. Zeolites were synthesized from perlite in the alkaline solution at above 0.1M NaOH concentrations. Below the temperature of 100${\circ}C$ Na-P was mainly formed, whereas analcime was the dominant zeolite at the temperature range of 100-150${\circ}C$. During Na-P synthesis chabazite and Na-X were also formed as by-products in case of lower proportion of solution/sample(<10ml/g) and higher NaOH concentraion (>3M), respectively. The alteration modes of perlite in the zeolite synthesis reflect that the formation of synthetic zeolites occurs as an incongruent dissolution likely with the diagenetic formation of natural zeolites from volcanic glass. Considering much difference in reaction kinetics between natural and synthetic systems, however, the evaluated synthetic conditions in these experiments were not directly applicable to the natural diagenetic system.

  • PDF

Mineral Composition of the Tamna Formation, Jeju Island (제주도 탐라층의 구성광물)

  • Hyun, Weonhak;Hwang, Jinyeon;Lee, Jinhyun;Son, Byeongseo;Oh, Jiho;Yang, Kyounghee;Kim, Kwanghee
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.335-348
    • /
    • 2016
  • The fluvial Tamna Formation, consisting of conglomerate, sandstone and mudstone layers, is widely distributed in Jeiu Island. Various sizes of quartz crystals were identified from most of the Tamna Formation, including the mudstone layer. XRD analysis also shows that the mudstone layer is composed of various minerals, quartz, plagioclase, K-feldspar, mica, magnetite, hematite, olivine, amphibole, gibbsite, calcite, analcime and clay minerals such as illite, kaolinite, vermiculite, smectite, chlorite, $10{\AA}$-halloysite. There is a tendency showing that the more amount of kaolinite, vermiculite, and chlorite is present where the more amount of quartz crystals is present. It is likely that the main source materials contributing to the Tamna Formation were from the parental rocks containing abundant quartz grains, suggesting that the Tamna Formation could not be related to Jeju volcanic rocks, but possibly to pre-existing basement rocks. Thus, we propose that the Tamna Formation was formed from the materials derived from both pre-existing basement rocks and Jeju volcanic rocks, which were subsequently affected by diagenesis, hydrothermal alteration and weathering process.