The integrated or the two-stage (dark anaerobic and photosynthetic) fermentation processes were compared for the hydrogen production using purple non-sulfur photosynthetic bacteria, Rhodopseudomonas palustris P4. Cell growth, pH changes and organic acids and bacteriochlorophyll contents were monitored during the processes. Culture broth of Rps. palustris P4 exhibited dark-red during the photosynthetic culture condition, while yellow under the anaerobic condition without light. Rps. palustris P4 grown at the photosynthetic condition evolved 0.38 and 1.33 ml $H_2$/mg-dcw during the dark and the light fermentation, respectively, which were totally 1.71 ml $H_2$/mg-dcw at the two-stage fermentation. The rate of hydrogen production using Rps. palustris P4 grown under the dark anaerobic condition was 2.76 ml $H_2$/mg-dcw which consisted of 0.46 and 2.30 ml $H_2$/mg-dcw from the dark and the photosynthetic fermentation processes, respectively. Rps. palustris P4 grown under dark anaerobic conditions produced $H_2$ 1.6 times higher than that of grown under the photosynthetic condition. However, total fermentation period of the former was 1.5 times slower than that of the latter, because the induced time of hydrogen production during the photosynthetic fermentation was 96 and 24 hours when the seed culture was the dark anaerobic and photosynthetic, respectively. The integrated fermentation process by Rps. palustris P4 produced 0.52 ml $H_2$/mg-dcw(1.01 mol $H_2$/mol glucose), which was 20% of the two-stage fermentation.
수소를 생산하는 미생물은 크게 광합성 세균(photosynthetic bacteria), 혐기성세균(non-photosynthetic anaerobic bacteria), 조류(algae) 등으로 구분되고, 이들의 수소 생성 기작, 사용가능기질 및 수소 발생량은 상당한 차이가 있다. 광합성세균은 Rhodospirillaceae, Chromatiaceae 및 Chlorobiaceae로 구분되며, 이는 각각 홍색비유황세균(purple non-sulfur bacteria), 홍색유황세균(purple sulfur bacteria), 녹색유황세균(green sulfur bacteria)으로 통칭된다. 혐기성 세균은 절대 또는 통성혐기세균중 일부가 수소생산에 관여하며, 조류는 녹조류(green algae)와 남조류(blue-green algae, cyanobacteria)가 알려져 있다. 생물학적 수소생산 기술은 (1) 녹조류(green algae)가 광합성 메카니즘에 의해 수소를 생산하는 직접 물 분해 수소생산(direct bio-photolysis) (2) 광합성 작용에 의해 물을 분해하여 산소를 발생하고, 동시에 공기 중 이산화탄소를 고정하여 고분자 저장물질로 균체 내에 저장한 후 혐기 발효 또는 광합성 발효에 의해 수소를 발생하는 간접 물 분해 수소생산(indirect bio-photolysis or two stage photolysis) (3) 빛이 존재하는 혐기상태 배양 조건에서 홍색 세균에 의한 광합성 발효(photo-fermentation) 또는 (4) 광이 존재하지 않는 조건에서 혐기 미생물에 의해 수소와 유기산을 내는 혐기 발효(dark anaerobic fermentation) (5) 균체 외(in virro) 수소 발생 (6) 일산화탄소 가스 전환 반응(microbial gas shift reaction)에 의한 수소 생산 기술로 구분할 수 있다. 물로부터 생물학적 기술에 의한 수소생산은 공기 중의 이산화탄소를 고정하고, 수소와 산소를 발생하는 원천기술로써 오래 전부터 미국, 유럽에서 태양에너지를 이용하는 광합성 미생물의 분리, 개선 및 반응기에 관한 연구가 축적되어 왔으며, 유기물 즉 바이오매스로부터 혐기 및 광합성 발효를 연속적으로 적용하는 기술은 비교적 최근에 일본을 비롯한 유기성 폐기물이 많은 국가에서 수소에너지 생산과 유기성 폐기물 처리라는 두 가지 목적에 부합하는 연구로써 활발히 진행되고 있다. 유기성 폐기물이나 폐수와 같은 수분함량이 높은 바이오매스는 대부분이 매립처리 되는 실정이지만 높은 수분 함량 때문에 매립 시 발생하는 침출수는 환경오염의 주범으로 가까운 장래에는 매립도 금지될 전망이다. 이와 같은 수소에너지 생산기술과 이용시스템 개발은 화석연료 사용을 최소화 할 수 있으며, 국내에서 다량 발생하는 유기성 폐기물을 이용한 에너지 생산으로 자원 강대국 입지에 설 수 있다. 미생물에 의한 수소생산 기술은 청정에너지 생산과 아울러, 동시에 산소 발생, 공기 중 이산화탄소 고정, 식품공장 폐수 및 음식쓰레기와 같은 유기성 폐기물 처리 등 환경에 이로운 방향으로 진행될 뿐만 아니라, 미생물 자체가 갖는 생물 산업성도 높아서 비타민류, 천연색소, 피부암 치료제등의 고부가가치 의약품 생산도 활성화할 수 있다.
생물학적 수소생산 공정은 다른 열화학적 공정이나 전기화학적 공정에 비하여 환경친화적이며 에너지를 덜 소모하는 공정이다. 생물학적 수소생산 공정은 크게 두 가지로 구별할 수 있는데, 광합성에 의한 수소생산과 혐기발효에 의한 수소생산이 그것이다. 광합성에 의한 수소생산 공정은 주로 물로부터 수소를 생산하고 동시에 공기 중의 이산화탄소도 저감하는 특징을 가지고 있으며, 혐기발효에 의한 수소생산 공정은 유기 탄소원을 섭취하는 박테리아에 의한 발효를 통해 이루어지는 공정이다. 본 논문에서는 생물학적 수소생산 공정에 대한 그간의 연구들에 대하여 살펴 보았다.
Rhodopseudomonas palustris P4 can produce $H_2$ either from CO by water-gas shift reaction or from various sugars by anaerobic fermentation. Fermentative $H_2$ production by P4 is fast, but its yield is relatively low due to the formation of various organic acids. In order to increase $H_2$ production yield from glucose, P4 was investigated for the photo-fermentation of acetate which is a major by-product of fermentative $H_2$ production. Experiments were performed in batch modes using both light-grown and dark-grown cells. When the dark-grown P4 was challenged with light and acetate, $H_2$ was produced with the consumption of acetate after a lag period of 25 h. $H_2$ production was inhibited when a nitrogen source, especially ammonium, is present. When the dark-fermentation broth containing acetate was adopted for photo-fermentation with light-grown cells, $H_2$ production and concomitant acetate consumption occurred without a lag period. The $H_2$ yield was estimated as 2.4 - 2.8 mol $H_2/mol$ acetate and the specific $H_2$ production rate was as 9.8 ml $H_2/g$ cell${\cdot}$h, The fact that a single strain can perform both dark- and light-fermentation gives a great advantage in process development Compared to a one-step dark-fermentation, the combined dark- and light-fermentation can increase the $H_2$ production yield on glucose by two-fold.
This study was conducted to evaluate the characteristics of dark fermentative $H_2$ production from microalgae (Chlorella vulgaris) using batch reactors under mesophilic (25, $35^{\circ}C$) and thermophilic (45, $55^{\circ}C$) conditions. The $H_2$ yield and $H_2$ production rate increased with increasing temperature. The maximum $H_2$ yield and $H_2$ production rate were 56.77 mL $H_2/g$ dcw, 3.33 mL $H_2/g\;dcw{\cdot}h$ at $55^{\circ}C$, respectively. The activation energy calculated using Arrhenius equation was 36.24 kcal/mol, which was higher than that of dark $H_2$ fermentation of glucose by anaerobic mixed culture. Although the concentration of butyrate was maintained, the concentrations of lactate and acetate increased with increasing temperature. The $H_2$ yield was linearly proportional to acetate/ butyrate ratio.
This paper deals with an economic evaluation of hydrogen production by fermentation. We evaluate the economic feasibility of domestic hydrogen production by fermentation utilizing glucose and waste water sludge in terms of hydrogen production prices. In addition, we make some sensitivity analysis of hydrogen prices by changing the values of input factors such as the price of glucose, the capital cost of the hydrogen production system, and the hydrogen production yields. The estimated hydrogen prices of the two-step dark-light hydrogen production by fermentation utilizing glucose was $5,347won/kgH_2$, and the single-step hydrogen production by anaerobic fermentation utilizing waste water sludge was $4,255won/kgH_2$, respectively. It is expected that the hydrogen production price by anaerobic fermentation can be reduced if we produce methane or hydrogen utilizing by-products such as alcohols and organic acids, or the government imposes some legal regulations on the treatment of waste water sludge.
미생물을 이용하여 수소를 생산하는 기술은 광합성 작용에 의한 직간접 물분해, 광합성 발효, 혐기발효, 균체외 반응 등 여러 가지 기술이 있으며 본 논문에서는 이들의 적용되는 미생물과 수소생산 메커니즘을 중심으로 소개하였다. 동시에 본 기술들의 현재까지 개발된 사례를 선진국과 국내 현황을 중심으로 기술하였다. 생물학적으로 수소를 생산하는 기술은 1940년대 후반부터 실험실적인 연구가 시작되었으나, 1990년대 환경문제를 해결하기 위해서 전 세계적으로 연구가 다시 활성화되었으며, 이 글에서는 미국, 일본, 유럽연합 및 한국을 중심으로 국내외 연구현황을 소개하였다.
본 연구에서는 거대 갈조류 대표종인 다시마(Saccharina japonica)로부터 물리화학적 전처리 방법, 미생물 접종비율, 다시마 추출물의 농도 및 pH 조건에 따른 휘발성 유기산(volatile fatty acids, VFAs) 생산 가능성 확인과 생산 효율을 평가하고자 하였다. 물리화학적 전처리 방법에 따른 휘발성 유기산의 최대 농도는 황산, 아임계수, 지질 추출 후 아임계수 전처리 순으로 나타났다. 황산 전처리 방법에서 미생물 접종비율(유효용적(WV)/미생물 부피(M) = 10~30), pH (6.0~7.0) 및 다시마 추출물의 농도(18.0~72.0 g/L)의 혐기성 발효 조건에 따른 휘발성 유기산 생성 농도에 미치는 영향을 확인한 결과, 발효 온도 $35^{\circ}C$, 미생물 접종비율 15, pH 7.0, 발효시간 372시간에서 다시마 추출물의 농도가 18.0, 36.0, 54.0, 72.0 g/L일 때, 휘발성 유기산의 최대 농도가 각각 9.8, 13.9, 18.6, 22.3 g/L로 확인되었다. 생산된 휘발성 유기산의 조성은 pH가 높을수록 아세트산과 프로피온산의 생산 비율이 높았으며, pH가 낮을수록 부티르산의 비율이 높게 확인되었다. 생산된 저농도의 휘발성 유기산은 농축 및 분리공정과 연계하여 향후 기초화학 원료와 바이오연료 등으로 사용될 수 있으므로, 기존 화석연료의 대체에너지 생산에 기여할 수 있을 것으로 기대된다.
The whole plant of crop maize was chopped and ensiled in airtight 1-L capacity glass jars to determine the influence of residual sugar on anaerobic yeast growth and on the fermentation of lactic acid by L. buchneri in whole crop maize silage. There were a total of six treatments used in this experiment as follow: added 25 g de-mineralised water per kg chopped maize serving as control (con), 37.5 g glucose solution containing 12.5 g glucose ($g_1$), 75 g glucose solution containing 25 g glucose ($g_2$), 25 g L. buchneri suspension intended for $10^6$ cfu $g^{-1}$ (L.b.), $g_1+L.b.$ and $g_2+L.b.$ All silos were stored in the dark at $20^{\circ}C$ until end of experiment. Jars were opened on duplicates at day 2, 7, 14, 28, 56 or triplicates at day 91 after ensiling for measuring the pH, microbiological enumeration and fermentative products. Results indicated that acidification rates for all silages were very fast, no difference occurred among treatments before day 28. After day 28 the pH values for silages inoculated by L. buchneri. with or without sugar tended to increase especially for treated only with L. buchneri, resulting in higher (p<0.01) finial pH than uninoculated silages. Compared with control silage, the added sugar significantly (p<0.01) increased dry matter (DM) loss, L. buchneri enhanced (p<0.01) DM loss further at different sugar existence. Silages inoculated by L. buchneri only or in combination with sugar addition contained less (p<0.01) lactic acid than the correspondent silages without inoculation with L. buchneri. In comparison with control, ethanol production is about 3 or 6 fold higher due to addition 12.5 or 25 g glucose per kg chopped maize at ensiling. The added sugar resulted in less acetic acid concentration (p<0.01) than control, but inoculation with L. buchneri increased (p<0.01) acetic acid than correspondent uninoculated silages at different sugar levels. No butyric acid and propionic acid were found in uninoculted silages, silages inoculated with L. buchneri. produced more propionic acid, 1-propanol and butyric acid. Lactobacilli counts were not influenced by added sugar, but increased (p<0.01) with inoculation of L. buchneri. The added sugar increased significantly (p<0.01) the yeast count, whereas L. buchneri showed the contrary effect. No differences were found in the aerobic stability among all treatments. In conclusions, 1) the added sugars encourage the growth of yeast and yeasts convert extra sugar into ethanol in maize silages. 2) The added sugars and L. buchneri do not influence the aerobic stability of silages stored in anaerobic silos.
진한 적색과 이상 발효 증상을 나타내는 피수박은 막대한 경제적 손실을 주고 있다. 본 연구는 피수박의 발생 원인을 밝히기 위하여 이상 발효와 내생 세균과의 연관성을 검토하였다. 수박의 내생 세균 밀도는 정상 수박의 경우 $2.2{\sim}37.0{\times}10^3$ cfu/g fw에 불과하였으나 피수박의 경우는 $1.26{\sim}1.75{\times}10^6$ cfu/g fw로 정상 수박에 비해 밀도가 매우 높았다. 피수박에서 분리한 56균주에서 17균주가 피수박을 유발하였다. 피수박과 관련이 있는 세균은 대부분이 Gram 음성으로 호기성인 Pseudomonas spp.와 혐기성 세균이었다. 따라서 피수박은 Gram 음성인 내생 세균의 증식에 의한 이상 발효가 원인이라고 추정된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.