DOI QR코드

DOI QR Code

Relationship between the Production of Fermentational Off-flavor and Presence of Microbial Endophytes in Bloody Watermelon

수박의 이상 발효(피수박)와 내생세균의 존재와의 연관성

  • Choi, Jae-Eul (Division of Plant Resources, Chungnam National University) ;
  • Choi, Chun-Hwan (Division of Plant Resources, Chungnam National University) ;
  • Ryuk, Jln-Ah (Division of Plant Resources, Chungnam National University) ;
  • An, Gil-Hwan (Department of Food Science and Technology, Chungnam National University) ;
  • Hwang, Yong-Soo (Division of Plant Resources, Chungnam National University)
  • 최재을 (충남대학교 식물자원학부) ;
  • 최춘환 (충남대학교 식물자원학부) ;
  • 육진아 (충남대학교 식물자원학부) ;
  • 안길환 (충남대학교 식품공학과) ;
  • 황용수 (충남대학교 식물자원학부)
  • Published : 2004.12.01

Abstract

The bloody watermelon exhibiting dark red and fermentation off-flavor results in a great economic loss. As an effort to clarify the cause of the bloody watermelon, relationship between the fermentational off-flavor and the presence of endophytic bacteria was studied. The number of endophytes was 2.2-37.0 ${\times}10^3$ cfu/g fw (fresh weight) in normal watermelons, compared to 1.26-1.75 ${\times}10^6$ cfu/g fw in bloody ones. Seventeen bacteria among 56 isolates from bloody watermelons could induce bloody watermelons. The bacteria responsible for bloody watermelons were mainly Gram negative: aerobic Pseudomonas spp and some anaerobic bacteria. The results in this study strongly suggested that the bloody watermelons were produced by abnormal fermentation and growth of endophytic Gram negative bacteria.

진한 적색과 이상 발효 증상을 나타내는 피수박은 막대한 경제적 손실을 주고 있다. 본 연구는 피수박의 발생 원인을 밝히기 위하여 이상 발효와 내생 세균과의 연관성을 검토하였다. 수박의 내생 세균 밀도는 정상 수박의 경우 $2.2{\sim}37.0{\times}10^3$ cfu/g fw에 불과하였으나 피수박의 경우는 $1.26{\sim}1.75{\times}10^6$ cfu/g fw로 정상 수박에 비해 밀도가 매우 높았다. 피수박에서 분리한 56균주에서 17균주가 피수박을 유발하였다. 피수박과 관련이 있는 세균은 대부분이 Gram 음성으로 호기성인 Pseudomonas spp.와 혐기성 세균이었다. 따라서 피수박은 Gram 음성인 내생 세균의 증식에 의한 이상 발효가 원인이라고 추정된다.

Keywords

References

  1. 최재을, 차선경, 김진희, 육진아, 황용수. 2003. 이상발효 참외로부터 분리한 내생 세균의 특성 및 발효증상유기. J. Kor. Soc. Hart. Sci. 44(3): 292-296
  2. Hickey, K. D., Orolaza, H., Zewet, N., vander Zwet, T. and Momol, M. T. 1998. The presence of endophytic Erwinia amylovora bacteria in symptomless apple tissue on orchard trees. Acta Hort. 489: 453-458
  3. Holt, J. G., Krieg, N. R., Sneath, J. P. H., Staley, A. T. and Williams, S. T. 1994. Bergey's mannual of determinative bacteriology. Williams and Wilkins Co., Baltimore, MD. USA. pp 964
  4. 김병수, 양동훈, 이호철. 1999.수박, 성공적 재배와 경영. 농민신문사. 322 p
  5. Kirchhof, G., Eckert, B., Stoffels, M., Baldani, J. I., Reis, V. M. and Hartmann, A. 2001. Herbaspirillum frisingense sp. nov., a new nirtogen fixing bacterial species that occurs in C4-fibre plants. Intl. J. Syst. Evol. Microbiol. 51: 157-168
  6. Klijin, N., Weerkamp, A. H. and de Vos, W. M. 1991. Identification of mesophilic lactic acid bacteria by using polymerase chain reaction amplified variable regions of 16S rRNA specific and specific DNA probes. Appl. Environ, Microbiol. 57: 3390-3393
  7. Komura, Y, Tochihara, H., Fukatsu, R., Nagai, Y and Yoneyama, S. 1971. Cucumber green mottle mosaic virus (watermelonestrain) in water and it's relationship to the fruit deterioration known as 'Konyaku' disease. Ann. Phytopath. Soc. Japan 37: 34-42 https://doi.org/10.3186/jjphytopath.37.34
  8. 이기운, 이봉춘, 박호철, 이용수. 1990. 한국에서 수박에 발생한 오이 녹반 모자이크 바이러스(Cucumber Green Mottle Mosaic Virus)병에 대하여. 한국식물병리학회지 6: 250-255
  9. Liu, W. T., Marsh, T. L., Cheng, H. and Forney, L. J. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbial. 63: 4516-4522
  10. Massol-Deya, A. A., Odelson, D. A. Hickey, R. F. and Tiedje, J. M. 1995. Bacterial community fingerprinting of amplified 16S and 16-23S ribosomal DNA gene sequences and restriction endonuclease analysis (ARDRA). In : Molecular microbial ecology manual, ed. by A. D. L. Akkermans, J. D. van Elsas, and F. J. de Bruijn, pp. 1-8. Kluwer Academic Publishers, Dortrecht, The Netherlands
  11. Mclnroy, A. J. and Kloepper, J. W. 1991. Analysis of population densities and identificationof endophytic bacteria of maize and cotton in the field. Bull. SROP 14: 328-331
  12. Misaghi, I. J. and Donndelinger. C. R. 1990. Endophytic bacteria in symptom free cotton plants. Phytopathology 80: 808-811 https://doi.org/10.1094/Phyto-80-808
  13. Nei, M. and Li, W. H. 1979. Mathematical model for syudying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76: 5269-5273 https://doi.org/10.1073/pnas.76.10.5269
  14. Nejad, P. and Jhonson, P. A. 2000. Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato. Biological Control 18: 208-215 https://doi.org/10.1006/bcon.2000.0837
  15. Pratella, G. C., Mari, M., Guizzardi, M. and Folchi, A. 1993. Preliminary studies on the efficency of endophytes in the biological control of the postharvest pathogens Monilinia laxa and Rhiropus stalonifer in stone fruit. Postharvest Biol. Technol. 3: 361-368 https://doi.org/10.1016/0925-5214(93)90016-V
  16. Schaad, N. W. 1988. Laboratory guide for identification of plant pathogenic bacteria. Bacteriol. Commit. Amer. Phytopath. Soc. St. Paul, MN, USA. 164 pp
  17. Shishido, M. and Chanway, C. P. 1999. Spruce growth specificity after treatment with plant growth promoting pseudomonas. Can. J. Bot. 77: 22-31 https://doi.org/10.1139/cjb-77-1-22
  18. Sturz, A. V and Christie, B. G. 1996. Endophytic bacteria of red clover as agent of allelopathic colver maize syndromes. Soil Biol. Biochem. 28: 583-588 https://doi.org/10.1016/0038-0717(95)00168-9
  19. Yang, C, Crowley, D. E. and Menge, J. A. 2001. 16S rDNA fingerprinting of rhizosphere bacterial communities associated with healthy and Phytophthora infected avocado roots. FEMS Microbiol. Ecol. 35: 129-136 https://doi.org/10.1111/j.1574-6941.2001.tb00796.x