• Title/Summary/Keyword: Anaerobic condition

Search Result 486, Processing Time 0.024 seconds

The Effect of Fermented Crude Feed from Korean Pine′s Foliage on the Growth of Korean Native Bull (잣나무 지엽을 이용한 발효 조사료가 한우의 성장에 미치는 영향)

  • 나기정;최인규;정의배
    • Journal of Veterinary Clinics
    • /
    • v.16 no.2
    • /
    • pp.257-264
    • /
    • 1999
  • The objective of this study was to estimate the possibility of use as a crude feed about Korean pine foliage. Foliage was fermented aerobic and anaerobic state. And then, it was fed Korean native bull 5 to 6 month old. Bulls were fed control (n=4), aerobic fermented (n=4) and anaerobic fermented (n=4) feed 30 percent of total ration. Bulls were examined with blood sample and body weight on day 0, 60, 120 and 180. There were no differences on complete blood cell count serum chemistry and incidence of disease among groups for experiment period. Also, electrolytes (Ca, Mg, P) balance were good condition. Experimental feed did not induced toxicosis in kidney and liver, Fermented foliage and leaves of Korean softwood were efficient crude feed in carbohydrate, fat and protein metabolism. Experimental feed induced growth of Korean native bull body weight in growing stage without retard. In addition to anaerobic fermented feed has a more higher growth rate than control feed. Our conclusion is that fermented softwood substitute some part of ration, minimum 30 percent, in growing stage of a Korean native bull.

  • PDF

Changes of physico-chemical properties of the activated sludges with anaerobic storage time (혐기화 시간에 따른 활성슬러지의 물리ㆍ화학적 특성변화)

  • 이창한;나영수;김도한;이송우;송승구
    • Journal of Environmental Science International
    • /
    • v.11 no.4
    • /
    • pp.339-346
    • /
    • 2002
  • Physico-chemical properties of the activated sludges(Suyoung and Changlim treatment plant), such as SVI(sludge volume index), absorbance, specific surface area, and specific resistance using Buchener funnel test were investigated with changing anaerobic storage time. This experimental condition was found that it was possible to estimate a linear relationship between their parameters such as specific surface area specific resistance, and sludge volume index(SVI). The specific surface area and the specific resistance to filtration of the activated sludges of Suyoung and Changlim treatment plant were found as 123.6~136.6$m^2$/gDS and 41.5~44.9$m^2$/gDS(dry solid), and 1.09$\times$10$^{14}$ ~5.48$\times$10$_{14}$ m/kg and 1.05$\times$10$^{14}$ ~2.48$\times$10$^{14}$ m/kg, respectively. The results gave a good linear relationship between the specific surface area and the specific resistance, r=2.25$\times$10$^{12}$ s-8.10$\times$10$^{13}$ ($R^2$=0.8885) at Suyoung treatment plant and r=1.26$\times$10$^{13}$ s-4.75$\times$10$^{14}$ ($R^2$=0.8756) at Changlim treatment plant.

Effects of $PCO_2$ on Methane Production Rate and Matter degradation in Anaerobic Digestion (혐기성소화의 물질분해 및 메탄생성에 대한 $CO_2$ 분압의 영향)

  • 이국의;김영철;서명교
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.2
    • /
    • pp.59-66
    • /
    • 2000
  • Effects of carbon dioxide partial pressure(PCO2) on bacterial population, methane production rate and matter degradation in anaerobic digestion were investigated by using anaerobic chemostat type reactors at 35$\pm$1$^{\circ}C$, at the HRT of 7 days. At PCO2 of 0.5 atm, the specific methane production rate and specific substrate removal rate reached the maximum rates. The methane production rates in the reactors fed by mixed substrate were 26% higher than those obtained under the controlled condition. The number of acetate consuming methanogenic bacteria enumerated by the MPN(most probable number) method, decreased when PCO2 exceeded 0.7 atm. Hydrogen consuming methanogenic bacteria and homoacetogenic bacteria increased as PCO2 increased from 0.1 to 0.6 atm, however, decreased slightly at PCO2 above 0.7 atm. The number of hydrolytic bacteria, sulfate-reducing bacteria and H2-producing acetogenic bacterial were not much influenced by the change of PCO2. The potential methanogenic activity reached the maximum at PCO2 0.5 atm, however, decreased significantly when PCO2 exceeded 0.7 atm, would depend on free PCO2 concentration in solution.

  • PDF

Differences in Rectus Femoris Activation Among Skaters Wearing Fabric Speed Skating Suits with Different Levels of Compression

  • Moon, Young-Jin;Song, Joo-Ho;Hwang, Jinny
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.4
    • /
    • pp.421-426
    • /
    • 2016
  • Objective: The purpose of this study was to investigate how different levels of compression exerted on the femoral region (known as the power zone) by coated fabric influences the activation and anaerobic capacity of the rectus femoris. Method: Three different levels of compression on the rectus femoris of the participants, namely 0% (normal condition), 9% (downsize), and 18% (downsize), were tested. The material of the fabric used in this study was nonfunctional polyurethane. Surface electromyography test was used to investigate the activation of the rectus femoris, while the isokinetic test (Cybex, $60^{\circ}/sec$) and Wingate test were used to investigate the maximum anaerobic power. Results: The different compression levels (0%, 9%, and 18%) did not improve the strength and anaerobic capacity of the knee extensor. However, knee flexor interfered with activation of the biceps femoris, which is an agonist for flexion, during 18% compression. Conclusion: Compression garments might improve the stretch shortening cycle effect at the time of eccentric contraction and during transition from eccentric to concentric contraction. Therefore, future studies are required to further investigate these findings.

A Feasibility Study for Renewable Energy from Sewage Sludge Biogas (하수슬러지 Biogas의 신재생에너지화 타당성 연구)

  • Kang, Ho;Lee, Hye Mi;Cho, Sang Sun;Park, Sun Uk;Jeong, Ji Hyun
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.754-760
    • /
    • 2010
  • This study was carried out not only to evaluate optimal operating condition to increase biogas production, but also to estimate feasibility of renewable energy from anaerobic digester of sewage sludge. Semi- continuous Fed and Mixed Reactors (SCFMRs) were operated in various condition to quantify the reactor variables. The result of SCFMR operation showed that the biogas productivity and total volatile solids (TVS) removal of total solids (TS) 4% reactor at hydraulic retention time (HRT) 20 days with Organic Loading Rate (OLR) of $1.45kg/m^3-d$ were $0.39m^3/m^3-d$ and 26.7%, respectively which was two times higher than that of TS 2.5% reactor. Consequently the daily biogas production of $20,000m^3$ would be possible from the total volume of $52,000m^3$ of anaerobic digesters of the municipal wastewater treatment plant in D city. In feasibility study for the Biogas utilization, combined heat and power system (CHP) and CNG gasification were examined. In case of CHP, the withdrawal period of capital cost for gas-engine (GE) and micro gas-turbine (MGT) were 7.7 years and 9.1 years respectively. biogas utilization as Clean Natural Gas (CNG) shows lower capital cost and higher profit than that of CHP system. CNG gasificaion after biogas purification is likely the best alternative for Biogas utilization which have more economic potential than CHP system. The withdrawal period of capital cost appeared to be 2.3 years.

Analysis of Organic Matter and Nutrient Leaching Characteristics of Agricultural Land Soils in Reservoir Area (저수구역 경작지 토양의 유기물 및 영양염류 용출특성 분석)

  • Yu, Nayeong;Shin, Minhwan;Lim, Jungha;Kum, Donghyuk;Nam, Changdong;Lim, Kyoungjae;Kim, Jonggun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.1
    • /
    • pp.89-102
    • /
    • 2021
  • Soils in agricultural lands contain large amount of organic matter and nutrients due to the injected fertilizers and manure. During heavy rain, surface water and base runoff pollutants flows into a nearby stream or lake with eroded soil from agricultural lands. On the other hands, agricultural lands near the lake are inundated due to the increase of the water level in the lake, leading to organic matter and nutrient release from the inundated soil. In this study, releasing rates of nutrient salts and organic substances were analyzed for the soil in the agricultural land, where cultivation activities has been carried out and periodically flooded, to account for the possibility of contamination from the inundated agricultural land in reservoir areas The experiment results have shown that COD was released from the soil in anaerobic conditions, and T-P was released in both anaerobic and aerobic conditions. However, in the case of T-N, it was found that the runoff by soil was not made before the rainfall occurred, and when the soil was impound due to rainfall, the elution occurred under the aerobic conditions. Through the results of this study, it was possible to account for the effect of flooded agricultural lands on the water quality in the lake, and this could be reflected in an efficient agricultural non-point pollution management policy. In order to determine the precise releasing rate for each agricultural land, it is believed that the leaching experiment for paddy fields and grasslands are needed.

Sustainable anaerobic digestion of euphorbiaceae waste for biogas production: Effects of feedstock variation

  • Kamaruddin, Mohamad Anuar;Ismail, Norli;Fauzi, Noor Fadhilah;Alrozi, Rasyidah;Hanif, Mohamad Haziq;Norashiddin, Faris Aiman
    • Advances in environmental research
    • /
    • v.10 no.1
    • /
    • pp.87-103
    • /
    • 2021
  • Anaerobic digestion (AD) refers to the biological process which can convert organic substrates to biogas in the absence of oxygen. The aim of this study was to determine the capability of feedstock to produce biogas and to quantify the biogas yield from different feedstocks. A co-digestion approach was carried out in a continuous stirred tank reactor operated under mesophilic conditions and at a constant organic loading rate of 0.0756 g COD/ L.day, with a hydraulic retention time of 25 days. For comparison, mono-digestion was also included in the experimental work. 2 L working volumes were used throughout the experimental work. The seed culture was obtained from composting as substrate digestion. When the feedstock was added to seeding, the biogas started to emit after three days of retention time. The highest volume of biogas was observed when the seeding volume used for 1000mL. However, the lowest volume of biogas yield was obtained from both co-digestion reactors, with a value of 340 mL. For methane yield, the highest methane production rate was 0.16 L CH4/mg. The COD with yield was at 8.6% and the lowest was at 0.5%. The highest quantity of methane was obtained from a reactor of Euphorbiaceae peel with added seeding, while the lowest methane yield came from a reactor of Euphorbiaceae stems with added seeding. In this study, sodium bicarbonate (NaHCO3) was used as a buffering solution to correct the pH in the reactor if the reactor condition was found to be in a souring or acidic condition.

Thermophilic Anaerobic Biodegradability of Agro-industrial Biomass (농축산바이오매스 고온 혐기성 생분해도 평가)

  • Heo, Namhyo;Kang, Ho;Lee, Seungheon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.101-101
    • /
    • 2010
  • Anaerobic digestion(AD) is the most promising method for treating and recycling of different organic wastes, such as organic fraction of municipal solid waste, household wastes, animal manure, agro-industrial wastes, industrial organic wastes and sewage sludge. During AD, i.e. organic materials are decomposed by anaerobic forming bacteria and fina1ly converted to excellent fertilizer and biogas which is a mixture of carbon dioxide and methane. AD has been one of the leading technologies that can make a large contribution to produce renewable energy and to reduce $CO_2$ and other green-house gas(GHG) emission, it is becoming a key method for both waste treatment and recovery of a renewable fuel and other valuable co-products. Currently some 80% of the world's overall energy supply of about 400 EJ per year in derived from fossil fuels. Nevertheless roughly 10~15% of this demand is covered by biomass resources, making biomass by far the most important renewable energy source used to date. The representative biofuels produced from the biomass are bioethanol, biodiesel and biogas, and currently biogas plays a smaller than other biofuels but steadily growing role. Traditionally anaerobic digestion applied for different biowaste e.g. sewage sludge, manure, other organic wastes treatment and stabilization, biogas has become a well established energy resource. However, the biowaste are fairly limited in respect to the production and utilization as renewable source, but the plant biomass, the so called "energy crops" are used for more biogas production in EU countries and the investigation on the biomethane potential of different crops and plant materials have been carried out. In Korea, with steadily increasing oil prices and improved environmental regulations, since 2005 anaerobic digestion was again stimulated, especially on the biogasification of different biowastes and agro-industrial biomass including "energy crops". This study have been carried out to investigate anaerobic biodegradability by the biochemical methane potential(BMP) test of animal manures, different forage crops i.e. "energy crops", plant and industrial organic wastes in the condition of thermophilic temperature, The biodegradability of animal manure were 63.2% and 58.2% with $315m^3CH_4/tonVS$ of cattle slurry and $370m^3CH_4/tonVS$ of pig slurry in ultimate methane yields. Those of winter forage crops were the range 75% to 87% with ultimate methane yield of $378m^3CH_4/tonVS$ to $450m^3CH_4/tonVS$ and those of summer forage crops were the range 81% to 85% with ultimate methane yield of $392m^3CH_4/tonVS$ to $415m^3CH_4/tonVS$. The forge crops as "energy crops" could be used as good renewable energy source to increase methane production and to improve biodegradability in co-digestion with animal manure or only energy crop digestion.

  • PDF

Anaerobic Digestion of Pig Manure and Night Soil Mixed Waste in a Normal Temperature (I) (常溫에서 豚 . 人糞混合廢棄物의 嫌氣性處理(I))

  • Kim, Nam-Cheon;Min, Dal-Ki
    • Journal of Environmental Health Sciences
    • /
    • v.14 no.1
    • /
    • pp.63-71
    • /
    • 1988
  • This study is an experimental research on the anaerobic digestion of pig manure and night soil mixed waste at room temperature (25$\circ$C), and the results are shown below: 1. The steady-state condition based on gas production as digestion temperature dropped to 25$\circ$C from 35$\circ$C was achieved at around 28, 47, 56, 64 days respectively when its hydraulic retention time(HRT) are 10, 20, 30, 40 days. 2, Alkalinity and volatile acid(VA) was increased as increasing the organic loading. 3. Removal efficiency of chemical oxygen demand(COD) and biochemical oxygen demand (BOD) was improved as longer HRT, and generally COD value is lower and BOD value is higher relatively. 4. Overall treatment efficiencies of mixed waste are higher than of pig manure and of night soft. 5. Organic removal efficiency at room temperature (25$\circ$C) is 20-25% lower at medium temperature (35$\circ$C) in a same VS loading condition. 6. Refractory fraction of the infiuent VS and organic removal rate constant(K) estimated at around 37% and 0.107/day respectively.

  • PDF

Intracellular Concentrations of NAD(P), NAD(P)H, and ATP in a Simulated Oxic-settling-anaerobic (OSA) Process (OSA 공정의 세포 내 ATP, NAD(H), NADP(H) 농도)

  • Ventura, Jey-R Sabado;Nam, Ji-Hyun;Yang, Benqin;Na, Ri;Kil, Hyejin;Nam, Deok-Hyeon;Kang, Ki-Hoon;Jahng, Deokjin
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.6
    • /
    • pp.599-609
    • /
    • 2015
  • In order to investigate why OSA (oxic-settling-anaerobic) process produces less sludge than CAS (conventional activated sludge) process, sequential cultivation through 1st aerobic-anaerobic-2nd aerobic conditions, were carried out. Then, the intracellular concentrations of adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NAD and NADH), and nicotinamide adenine dinucleotide phosphate (NADP and NADPH) were monitored for these three stages. Results showed that the concentrations of these energy substances rapidly decreased through time in both aerobic and anaerobic conditions but the anaerobic culture contained the lower energy level than aerobic culture. The 2nd aerobic culture that experienced anaerobic condition showed lower concentration of these energy substances than those of the 1st aerobic culture. Meanwhile, the anaerobic culture corresponding to the sludge holding stage of OSA was subjected to different soluble chemical oxygen demand (SCOD) levels, detention time, and temperature to evaluate the effects of these variations on the energy level difference between the 1st and 2nd aerobic stages. The lower the SCOD concentration, the longer detention time; and the higher temperature in the anaerobic stage tended to further reduce the intracellular level of the 2nd aerobic culture. On the average, the intracellular energy level of the anaerobic and 2nd aerobic stage were 57.73% and 39.12% of the 1st aerobic culture, respectively. These indicated that the insertion of an anaerobic stage between two aerobic stages could lower the intracellular energy levels, hence the lower the sludge in OSA than CAS process. Moreover, manipulation of the operating conditions of the intervening anaerobic stage can change intracellular energy levels thereby controlling sludge production.