• Title/Summary/Keyword: Anaerobic Power

Search Result 89, Processing Time 0.025 seconds

Effects of red ginseng supplementation on aerobic.anaerobic performance, central and peripheral fatigue (홍삼 섭취가 유.무산소성 운동수행능력과 중추 및 말초피로에 미치는 영향)

  • Yoon, Sung-Jin;Kim, Ki-Hyung;Kim, Chang-Ju;Park, Hae-Chan;Kang, Kyung-Hee;Kim, Moo-Jung;Kang, Sung-Mok;Kwak, Uk-Heon;Kim, Hyung-Joon
    • Journal of Ginseng Research
    • /
    • v.32 no.3
    • /
    • pp.210-219
    • /
    • 2008
  • The purpose of this study is to examine the effect of red ginseng on the performance of aerobics anaerobics exercise and peripheral central fatigue. For this purpose, we measured $\dot{V}O_2max$, $\dot{V}O_2$ at recovery, anaerobic power, blood lactate, Branched-Chain Amino Acid(BCAA) etc in thirty male subjects. They were divided into three group; EGG: endurance training + red ginseng supplementation group(n=7), EPG: endurance training + placebo supplementation group(n=7), GG: only red ginseng supplementation group(n=10). 6 subjects were excepted because they were intermediate test absence(test at four week : EGG=1, EPG=2; test at eight week : EGG=1). EGG and GG took red ginseng twice a day for total 8weeks. Moreover, EGG and EPG were exercised during 45 minutes, three times a week for 12 weeks. The result of this study are shown as follow: In case of $\dot{V}O_2max$, %$\dot{V}O_2$/$\dot{V}O_2max$ and plasma BCAA concentration, no statistically significant change were found among three groups. But, it was showed that three groups tended to increased slightly in $\dot{V}O_2max$, % $\dot{V}O_2$/$\dot{V}O_2max$ and plasma BCAA concentration. For conclusion, the present data provide a new evidence that ingestion of ergogenic aids contained with red ginseng may improve aerobic exercise performance and central fatigue.

Effects of Energy System Contribution on Isokinetic Muscle Strength in Various Sport Events Athletes (무산소, 유산소 운동종목별 엘리트선수의 등속성 근기능에 미치는 영향)

  • Kwon, Hyeong-Tae;Kim, Ki-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.272-279
    • /
    • 2018
  • This study was conducted to compare the muscle strength, muscle power, and H/Q ratio according to energy system contribution in athletes participating in various sports. Subjects of the study were assigned into an Anaerobic Exercise Group (AEG, n=60; Short-Distance, Weight Lifting, Jumping, Throwing, Bowling, Golf) and an Endurance Exercise Group (EEG, n=60; Modern Pentathlon, Field Hockey, Handball, Cycle, Boxing, Rowing) groups. Isokinetic peak torque/body weight% and flexor/extensor ratio at 60, 180 deg/sec of knee extension and flexion were measured using an cybex 770. Data analysis was conducted using an independent t-test and one-way ANOVA. Based on the results of this study, there was higher extension, flexion strength and flexion power in the AEG than the EEG (p<0.05). We also confirmed higher muscle strength and muscle power in short distance and jumping athletes than other athletes participating in other events (p<0.05). However, there was no significant difference within the endurance exercise group. The HS ratio was within a stable range of 50% to 60% in all events. Collectively, the outcomes of this study indicate that routine physiological and performance testing can provide measurable benefits for elite athletes and their coaches.

A study on the introduction of organic waste-to-energy incentive system(I): Precise monitoring of biogasification (유기성폐자원에너지 인센티브제도 도입방안 연구(I): 바이오가스화 정밀모니터링)

  • Kwon, Jun-Hwa;Moon, Hee-Sung;Lee, Won-Seok;Lee, Dong-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.67-76
    • /
    • 2021
  • Biogasification is a technology that produces environmentally friendly fuel using methane gas generated in the process of stably decomposing and processing organic waste. Biogasification is the most used method for energy conversion of organic waste with high moisture content, and is a useful method for organic waste treatment following the prohibition of direct landfill (2005) and marine dumping (2013). Due to African Swine Fever (ASF), which recently occurred in Korea, recycling of wet feed is prohibited, and consumers such as dry feed and compost are negatively recognized, making it difficult to treat food waste. Accordingly, biogasification is attracting more attention for the treatment and recycling of food waste. Korea's energy consumption amounted to 268.41 106toe, ranking 9th in the world. However, it is an energy-poor country that depends on foreign imports for about 95.8% of its energy supply. Therefore, in Korea, the Renewable Energy Portfolio Standard (RPS) is being introduced. The domestic RPS system sets the weight of the new and renewable energy certificate (REC, Renewable energy certificate) of waste energy lower than that of other renewable energy. Therefore, an additional incentive system is required for the activation of waste-to-energy. In this study, the operation of an anaerobic digester that treats food waste, food waste Leachate and various organic wastes was confirmed. It was intended to be used as basic data for preparing the waste-to-energy incentive system through precise monitoring for a certain period of time. Four sites that produce biogas from organic waste and use them for power generation and heavy gas were selected as target facilities, and field surveys and sampling were conducted. Basic properties analysis was performed on the influent sample of organic waste and the effluent sample according to the treatment process. As a result of the analysis of the properties, the total solids of the digester influent was an average of 12.11%, and the volatile solids of the total solids were confirmed to be 85.86%. BOD and CODcr removal rates were 60.8% and 64.8%. The volatile fatty acids in the influent averaged 55,716 mg/L. It can be confirmed that most of the volatile fatty acids were decomposed and removed with an average reduction rate of 92.3% after anaerobic digestion.

The Structure Improvement of Microbial Fuel Cell to Generate Electricity from swine wastewater (가축분뇨를 이용하는 미생물연료전지 개발을 위한 구조개선)

  • Jang, Jaekyung;Sun, RyouYoung;Lee, SungHyoun;Kim, JongGoo;Kang, YounKoo;Kim, Young Hwa
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.252.1-252.1
    • /
    • 2010
  • These studies convert to useful electricity from swine wastewater and to treat this wastewater. In order to operate the microbial fuel cell(MFC) for the swine wastewater, the anode volume of MFCs was scaled up with 5L in the vacant condition. Graphite felts and low-priced mesh stainless-less as electrode had mixed up and packed into the anode compartment. The meshed stainless-less electrode could also be acted the collector of electron produced by microorganisms in anode. For a cathode compartment, graphite felt loaded Pt/C catalyst was used. Graphite felt electrode embedded in the anode compartment was punched holds at regular intervals to prevent occurred the channeling phenomenon. The sources of seeding on microbial fuel cell was used a mixture of swine wastewater and anaerobic digestion sludge(1:1). It was enriched within 6 days. Swine wastewater was fed with 53.26 ml/min flow rate. The MFCs produced a current of about 17 mA stably used swine wastewater with $3,167{\pm}80mg/L$. The maximum power density and current density was 680 $mW/m^3$ and 3,770 $mA/m^3$, respectively. From these results it is showed that treatment of swine wastewater synchronizes with electricity generation using modified low priced microbial fuel cell.

  • PDF

Life Cycle Assessment of Greenhouse Gas Emissions from Livestock and Food Wastes Co-digestive Biogas Production System (전과정평가 방법을 이용한 가축분뇨/음식폐기물 통합 소화형 바이오가스 시설의 온실가스 배출량 평가)

  • Nam, Jae-Jak;Yoon, Young-Man;Lee, Young-Haeng;So, Kyu-Ho;Kim, Chang-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.406-412
    • /
    • 2008
  • Biogas plant with anaerobic digestion is receiving high attention as a facility for both livestock waste treatment and electric power generation. Objective of this study was to perform life cycle assessment (LCA) of a biogas plant which incorporates swine and food waste (7:3) as source materials for biogas production. In addition, the biogas production process was compared with the prevalent composting method as a reference in the aspects of green house gas (GHG) reduction potential and environmental impact. The biogas method was capable of reducing 52 kg $CO_2$ eq. emission per ton of swine/food waste, but the composting process was estimated to emit 268 kg $CO_2$ eq. into air. The biogas method was evaluated as more beneficial to the environment by mitigating the impact on abiotic depletion potential (ADP), global warming potential (GWP), ozone depletion potential (ODP), eutrophication potential (EP), and photochemical ozone creation potential (POCP), but not to acidification potential (AP).

Hydrogen Sulfide Removal of Biogas from Sewage Treatment Plant with Micro-bubble Generation System (마이크로버블 장치를 이용한 하수처리장 바이오가스의 황화수소 제거)

  • Jung, Jae-Ouk;Jung, Yong-Jun
    • Journal of Wetlands Research
    • /
    • v.22 no.4
    • /
    • pp.239-244
    • /
    • 2020
  • Prior to utilization of energy and power generation, the biogas from anaerobic digestion of sewage treatment plant(46,000㎡/d) should be purified particularly hydrogen sulfide among the various kinds of impurities. This study has focused on the methane decreasing rate and the removal of both hydrogen sulfide and carbon dioxide. In the case of partial circulation, 59.7% of methane gas was decreased to 57.4% in spite of oxidation process with micro-bubble. Carbon dioxide was removed from 38% to 32% and 76.1% of hydrogen sulfide was removed where 1,400ppm was introduced to the DIWS system, which indicated that DIWS system can be of use for the hydrogen sulfide removal of biogas from sewage treatment plant.

Enhancing Electricity Generation Using a Laccase-Based Microbial Fuel Cell with Yeast Galactomyces reessii on the Cathode

  • Chaijak, Pimprapa;Sukkasem, Chontisa;Lertworapreecha, Monthon;Boonsawang, Piyarat;Wijasika, Sutthida;Sato, Chikashi
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1360-1366
    • /
    • 2018
  • The fungi associated with termites secrete enzymes such as laccase (multi-copper oxidase) that can degrade extracellular wood matrix. Laccase uses molecular oxygen as an electron acceptor to catalyze the degradation of organic compounds. Owing to its ability to transfer electrons from the cathodic electrode to molecular oxygen, laccase has the potential to be a biocatalyst on the surface of the cathodic electrode of a microbial fuel cell (MFC). In this study, a two-chamber MFC using the laccase-producing fungus Galactomyces reessii was investigated. The fungus cultured on coconut coir was placed in the cathode chamber, while an anaerobic microbial community was maintained in the anode chamber fed by industrial rubber wastewater and supplemented by sulfate and a pH buffer. The laccase-based biocathode MFC (lbMFC) produced the maximum open circuit voltage of 250 mV, output voltage of 145 mV (with a $1,000{\Omega}$ resistor), power density of $59mW/m^2$, and current density of $278mA/m^2$, and a 70% increase in half-cell potential. This study demonstrated the capability of laccase-producing yeast Galactomyces reessii as a biocatalyst on the cathode of the two-chamber lbMFC.

The Status of Biogas as Renewable Energy (신재생에너지로서 바이오가스 현황)

  • Lim, Young-Kwan;Lee, Joung-Min;Jung, Choong-Sub
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.125-130
    • /
    • 2012
  • In these days, there has been increased focus on global warming and the exhaustion of resources recently caused by the heavy consumption of fossil resources. In order to resolve these problems, biomass is increasingly gaining international attention as a renewable energy source. Biogas derived from various biomass is environmental friendly alternative fuel for power generation, heating and vehicle fuel. Large amounts of sewage sludge, food waste and manure are generated from human activity, but these organic wastes contain high levels of organic matter and thus they are potential substrates for producing methane of biogas. The biogas contains 60% of highly concentrated methane, which is expected to be used effectively as energy. In this paper, we investigate the status of biogas in Korea as an alternative energy.

Applying nano-HA in addition to scaling and root planing increases clinical attachment gain

  • Uysal, Ozge;Ustaoglu, Gulbahar;Behcet, Mustafa;Albayrak, Onder;Tunali, Mustafa
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.2
    • /
    • pp.116-126
    • /
    • 2022
  • Purpose: This study evaluated the efficacy of treating periodontitis using subgingival nano-hydroxyapatite powder with an air abrasion device (NHAPA) combined with scaling and root planing (SRP). Methods: A total of 28 patients with stage III periodontitis (grade B) were included in this study, although 1 was lost during follow-up and 3 used antibiotics. The patients were divided into a test group and a control group. All patients first received whole-mouth SRP using hand instruments, and a split-mouth approach was used for the second treatment. In the test group, the teeth were treated with NHAPA for 15 seconds at 70% power per pocket. Subgingival plaque samples were obtained from the 2 deepest pockets at the test and control sites before treatment (baseline) and 3 months after treatment. The full-mouth plaque index (PI), gingival index (GI), papillary bleeding index (PBI), bleeding on probing (BOP), probing depth (PD) and clinical attachment level (CAL) were recorded at baseline and at 1- and 3-month post-treatment. Real-time polymerase chain reaction was used to determine the colonisation of Treponema denticola (Td), Porphyromonas gingivalis (Pg), and Aggregatibacter actinomycetemcomitans in the subgingival plaque. Results: From baseline to the first month, the test group showed significantly larger changes in BOP and CAL (43.705%±27.495% and 1.160±0.747 mm, respectively) than the control group (36.311%±27.599% and 0.947±0.635 mm, respectively). Periodontal parameters had improved in both groups at 3 months. The reductions of PI, GI, BOP, PD, and CAL in the test group at 3 months were greater and statistically significant. The total bacterial count and Td and Pg species had decreased significantly by the third month in both groups (P<0.05). Conclusions: Applying NHAPA in addition to SRP improves clinical periodontal parameters more than SRP alone. Subgingival NHAPA may encourage clot adhesion to tooth surfaces by increasing surface wettability.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Power generation and Stream - Design and Operation Guideline (바이오가스 이용 기술지침 마련을 위한 연구(III) - 기술지침(안) 중심으로)

  • Moon, HeeSung;Bae, Jisu;Pack, Hoyeun;Jeon, Taewan;Lee, Younggi;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.2
    • /
    • pp.95-103
    • /
    • 2018
  • As a guideline for desulfurization and dehumidification pretreatment facility for optimizing utilization of biogas, the $H_2S$ concentration is set at 150 % which can be treated with iron salts, dehumidification is the optimum value for generator operation, and the relative humidity applied at the utilization of biogas in EU is set at 60 %. We have set up the generator facility guidelines to optimize utilization of biogas. The appropriate amount of biogas should be at least 90 % of the total gas generation, and the capacity of generator facility should be set at 20~30 %. In order to equalize the pressure of the incoming gas the generator, a gas equalization tank should be installed and the generator room average temperature should be kept at $45^{\circ}C$ or less. Since the gas is not produced at a certain methane concentration in the digester, the efficiency is lowered. Therefore, it is required to install an air fuel ratio control system according to the change in methane concentration. Therefore, it is necessary to compensate for the disadvantages of biogasification facilities of organic waste resources and optimize utilization of biogas and improve operation of facilities. This study was conducted to optimize biogas utilization of type of organic waste(containing sewage sludge and food waste, animal manure), investigate the facilities problem and propose design, operation guidelines such as pre-treatment facilities and generators.