• 제목/요약/키워드: Anaerobic Biodegradability

검색결과 78건 처리시간 0.03초

음식물쓰레기와 하수슬러지의 고율 혐기성 통합소화 (High-rate Anaerobic Co-digestion of Food Waste and Sewage Sludge)

  • 허남효;정상순
    • 신재생에너지
    • /
    • 제1권2호
    • /
    • pp.60-72
    • /
    • 2005
  • The effect of alkaline pre-treatment on the solubilization of waste activated sludge(WAS) was investigated, and the biodegradability of WAS, pretreated WAS, [PWAS], food waste and two types of mixture were estimated by biochemical methane potential [BMP] test at $35^{\circ}C$. The biodegradability of PWAS and mixture waste were significantly improved due to the effect of alkaline hydrolysis of WAS. An alkaline pre-treatment was identified to be one of the useful pre-treatment for improving biodegradability of WAS and mixture waste. In high-rate anaerobic co-digestion system coordinate with an alkaline pre-treatment in process, the digesters were operated at the HRT of 5, 7, 10 and 13 days with a mixture of FW $50\%\;and\;PWAS\;50\%,\;$In term of $CH_4$ content, VS removal and specific methane production [SMP] which are the parameters in the performance of digester, the optimum operating condition was found to be a HRT of 7 days and a OLR of 4.20g/L-day with the highest SMP of 0.340 L $CH_4/g$ VS.

  • PDF

Effects of Hydro-thermal Reaction Temperature on Anaerobic Biodegradability of Piggery Manure Hydrolysate

  • Kim, Ho;Jeon, Yong-Woo
    • 한국토양비료학회지
    • /
    • 제48권6호
    • /
    • pp.602-609
    • /
    • 2015
  • In order to enhance a biogas production by the hydro-thermal pre-treatment of piggery manure, the effects of hydro-thermal reaction temperature at thermal hydrolysis of piggery manure on the methane potential and anaerobic biodegradability of thermal hydrolysate were analyzed. The increase of hydro-thermal reaction temperature from $170^{\circ}C$ to $220^{\circ}C$ caused the enhancement of hydrolysis efficiency, and most of organic matters were present in soluble forms. However, the methane potentials ($B_u-TCOD$) of hydrolysate were decreased from 0.239 to $0.188Nm^3kg^{-1}-TCOD_{added}$ by increasing hydro-thermal reaction temperature from $170^{\circ}C$ to $220^{\circ}C$, and also the anaerobic biodegradability (DTCOD) decreased from 74.6% to 58.6% with increase of hydro-thermal reaction temperature. The increase of hydro-thermal reaction temperature from $170^{\circ}C$ to $220^{\circ}C$ resulted in the decrease of easily biodegradable organic matter content, while persistent organic matter contents increased.

농축산바이오매스 고온 혐기성 생분해도 평가 (Thermophilic Anaerobic Biodegradability of Agro-industrial Biomass)

  • 허남효;강호;이승헌
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.101-101
    • /
    • 2010
  • Anaerobic digestion(AD) is the most promising method for treating and recycling of different organic wastes, such as organic fraction of municipal solid waste, household wastes, animal manure, agro-industrial wastes, industrial organic wastes and sewage sludge. During AD, i.e. organic materials are decomposed by anaerobic forming bacteria and fina1ly converted to excellent fertilizer and biogas which is a mixture of carbon dioxide and methane. AD has been one of the leading technologies that can make a large contribution to produce renewable energy and to reduce $CO_2$ and other green-house gas(GHG) emission, it is becoming a key method for both waste treatment and recovery of a renewable fuel and other valuable co-products. Currently some 80% of the world's overall energy supply of about 400 EJ per year in derived from fossil fuels. Nevertheless roughly 10~15% of this demand is covered by biomass resources, making biomass by far the most important renewable energy source used to date. The representative biofuels produced from the biomass are bioethanol, biodiesel and biogas, and currently biogas plays a smaller than other biofuels but steadily growing role. Traditionally anaerobic digestion applied for different biowaste e.g. sewage sludge, manure, other organic wastes treatment and stabilization, biogas has become a well established energy resource. However, the biowaste are fairly limited in respect to the production and utilization as renewable source, but the plant biomass, the so called "energy crops" are used for more biogas production in EU countries and the investigation on the biomethane potential of different crops and plant materials have been carried out. In Korea, with steadily increasing oil prices and improved environmental regulations, since 2005 anaerobic digestion was again stimulated, especially on the biogasification of different biowastes and agro-industrial biomass including "energy crops". This study have been carried out to investigate anaerobic biodegradability by the biochemical methane potential(BMP) test of animal manures, different forage crops i.e. "energy crops", plant and industrial organic wastes in the condition of thermophilic temperature, The biodegradability of animal manure were 63.2% and 58.2% with $315m^3CH_4/tonVS$ of cattle slurry and $370m^3CH_4/tonVS$ of pig slurry in ultimate methane yields. Those of winter forage crops were the range 75% to 87% with ultimate methane yield of $378m^3CH_4/tonVS$ to $450m^3CH_4/tonVS$ and those of summer forage crops were the range 81% to 85% with ultimate methane yield of $392m^3CH_4/tonVS$ to $415m^3CH_4/tonVS$. The forge crops as "energy crops" could be used as good renewable energy source to increase methane production and to improve biodegradability in co-digestion with animal manure or only energy crop digestion.

  • PDF

회분식 혐기소화에 의한 혐기적 유기물 분해율의 보정 방법 (Correction Method of Anaerobic Organic Biodegradability by Batch Anaerobic Digestion)

  • 김승환;오승용;김창현;윤영만
    • 한국토양비료학회지
    • /
    • 제45권6호
    • /
    • pp.1086-1093
    • /
    • 2012
  • 본 연구는 유기성 바이오매스의 혐기소화율 평가에 주로 이용되는 VDI4630법에 대하여 소화액에 녹아 있는 탄산이온 ($CO_3{^{2-}}$)과 혐기소화 미생물 반응에 참여하는 수분 ($H_2O$)이 유기물의 혐기적 분해율에 미치는 영향을 분석하였으며, 이를 위해 탄산이온과 수분반응물에 의한 유기물의 혐기적 분해율 산출 보정식을 개발 하고자하였다. 돼지 혈액, 돼지 내장잔재물, 돼지 장내잔재물, 소 반추위잔재물의 화학조성식은 각각 $C_{3.78}H_{8.39}O_{1.46}N_1S_{0.01}$, $C_{9.69}H_{15.42}O_{2.85}N_1S_{0.03}$, $C_{25.17}H_{43.32}O_{15.04}N_1$, $C_{27.23}H_{42.38}O_{15.93}N_1S_{0.11}$으로 나타났으며, 돼지 혈액, 돼지 내장 잔재물, 돼지 장내잔재물, 소 반추위잔재물에서 이론적으로 1 mol의 유기물이 분해되는데, 0.336, 0.485, 0.227, 0.266 mol의 수분이 참여하였다. 혐기적 유기물 분해율에서 이론적 메탄생산퍼텐셜 대비 실험적 메탄생산퍼텐셜 ($B_u/B_{th}$)의 비율로 산출한 유기물 분해율은 돼지 혈액, 돼지 내장 잔재물, 돼지 장내잔재물, 소 반추위잔재물에서 각각 82.3, 81.5, 70.8, 66.1%이었으며, VDI4630에 근거한 유기물 분해율 (AB)은 각각 72.2, 87.8, 74.2, 62.0%를 보여 이론적 메탄생산퍼텐셜 대비 실험적 메탄생산퍼텐셜 ($B_u/B_{th}$)의 비율로 산출하는 유기물 분해율과는 전체 시험구에서 통계적으로 유의성 있는 차이를 보였다. VDI4630법에 소화액 중의 알칼리도를 보정한 유기물 분해율 (AB-I)은 돼지 혈액, 돼지 내장 잔재물, 돼지 장내잔재물, 소 반추위잔재물에서 각각 72.4, 88.1, 74.5, 62.1%를 보였으며, 알칼리도와 수분 반응물을 동시에 보정한 유기물 분해율 (AB-II)에서는 각각 72.5, 88.5, 74.5, 62.3%를 보여 본 연구에서 시험한 각각의 시료에서의 유기물 분해율 AB, AB-I, AB-II 간의 평균은 통계적으로 유의성 있는 차이를 보이지 않았다. 그러나 알칼리도, 수분 반응물의 보정식은 유기물의 혐기적 분해율의 측정에서 좀 더 높은 정확도를 보일 수 있을 것으로 판단된다.

가축분뇨와 간척지 사료작물의 메탄발생량 (Biochemical Methane Potential of Animal Manure and Cultivated Forage Crops at the Reclaimed Tideland)

  • 허남효;이승헌;김병기
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.79-82
    • /
    • 2008
  • Anaerobic biodegradability(AB), which can be determined with the ultimate methane yield by the decomposition of organic materials, is one of the important parameters for the design and the operation of anaerobic digestion plant. In this study, Biochemical Methane Potential(BMP) test has been carried out to evaluate the methane yield of animal manures, such as pig and cattle slurries, and different forage crops cultivated at the reclaimed tideland, such as maize, sorghum, barley, rye, Italian ryegrass(IRG), rape, rush and sludge produced from slaughterhouse wastewater treatment plant(SWTP). In the ultimate methane yield of animal manure, that of pig slurry(no used a EM) was 407 $mlCH_4/gVS_{fed}$ higher than 242 $mlCH_4/gVS_{fed}$ of cattle slurry. The ultimate methane yield of spike-crop rye was 442.36 $mlCH_4/gVS_{fed}$ the highest among different forage crops, the other showed the value above a methane yield of 300 $mlCH_4/gVS_{fed}$. The forage crop could be used as a good substrate to improve the methane production in anaerobic co-digestion together with animal manure.

  • PDF

감마선전처리에 따른 하수슬러지의 성상 변화 및 혐기성분해 특성 평가 (Effect of Gamma Irradiation on Physico-Chemical Characteristics and Ultimate Anaerobic Biodegradability of Sewage Sludge)

  • 강호;나은경;이면주
    • 한국물환경학회지
    • /
    • 제20권4호
    • /
    • pp.327-332
    • /
    • 2004
  • This study was carried out to examine the effect of gamma irradiation on the physico-chemical characteristics and ultimate anaerobic biodegradability of sewage sludge. The results found that the solubilization rates of SCOD in wasted activated sludge(WAS) and thickened sludge(T-S) with gamma irradiation of 3kGy were 8 times and 7 times greater than these of the raw WAS and T-S without the irradiation, respectively; each soluble concentration protein were 4 times and 3 times greater than these of the raw WAS and T-S; each soluble carbohydrate concentration was 8 times and 6 times greater than these of the raw WAS and T-S. The ultimate anaerobic biodegradabilities of WAS and T-S with gamma irradiation were 51 % and 50%, which corresponds to each 8% and 10% greater than these of the raw sludges. Approximately 83% and 81% of the each biodegradable substrates in the irradiated WAS and the T-S were degraded within 11 days with the first order decay rate coefficients, $k_1$ that ranged $0.143{\sim}0.164day^{-1}$ for WAS and $0.134{\sim}0.152day^{-1}$ for T-S. Based on the results, it can be concluded that when irradiated with gamma the solubilization of sewage sludge greatly increases resulting in substrates suitable for the subsequent biological treatment processes.

기계식 전처리를 이용한 하수슬러지의 가용화 (Disintegration of Sewage Sludge Using Mechanical Pre-treatment)

  • 이채영;유황룡
    • 유기물자원화
    • /
    • 제17권3호
    • /
    • pp.82-90
    • /
    • 2009
  • 본 연구에서는 기계식 전처리에 의한 하수 슬러지의 가용화 효과를 회분식 실험을 통해 조사하였다. 기계식 전처리를 통한 하수슬러지의 가용화는 세포벽의 파괴로 통해 용존성 화학적 산소요구량, 단백질 및 탄수화물의 농도를 증가시키는 것으로 나타났다. 알칼리와 기계식 전처리를 병행하여 슬러지를 가용화한 결과 기계식 전처리만을 수행한 경우에 비해 용존성 화학적 산소요구량이 높은 것으로 나타났다. 혐기성 생분해도 측면에서 기계식 전처리는 메탄 발생량을 증가시키는 것으로 나타났다. 기계식과 알칼리 및 기계식 전처리를 동시에 수행한 경우 각각 24.1%와 44.5%의 생화학적 메탄 잠재능을 향상시키는 것으로 나타나 하수슬러지의 가용화는 혐기성 생분해도 향상에 효과적이다.

혐기-호기 공정을 이용한 염료페수의 생물학적 처리 (Biological Treatemnt of Dye Wastewater Using an Anaerobic-Aerobic System)

  • 박영식;문정현;안갑환
    • 한국환경과학회지
    • /
    • 제11권6호
    • /
    • pp.569-576
    • /
    • 2002
  • Anaerobic/aerobic reactor system was used to treat a synthetic wastewater with glucose as carbon sources(0.38~2.29 kg COD/m3.day) and Acid Red 14(1.05 "24.00 g Acid Red 141m3.day, color degree of 570 ~ 1710). COD removal efficiency by the anaerobic stage in operation period were above 90 % organic loading rate of 0.38 ~ 2.29 kg COD/m3.day(except, adaptation period) and the removal efficiency of the whole system were above 96 %. The decolorization of the Acid Red 14 was through the alteration of the dye structure(or cleavage of the Azo bond) during the anaerobic treatment. In the A/A system, the anaerobic stage played an essential role in removing both color and COD. In addition it also improves biodegradability of dye f3r further aerobic treatment. After operation, average MLSS concentration of anaerobic sludge reactor, anaerobic fixed-bed reactor and aerobic fixed-bed reactor were 17100mg/L, 20000mg/L, and 10000mg/L, respectively.

가축분뇨 및 음식물쓰레기의 혐기성 소화 병합처리 시 VS 제거효율과 메탄 발생량의 관한 연구 (A Study on VS Removal Efficiency and Methane Emission in Combined Anaerobic Digestion of Livestock Manure and Food Waste)

  • 최영익;지현조;정진희;정병길;김정권
    • 한국환경과학회지
    • /
    • 제27권9호
    • /
    • pp.737-742
    • /
    • 2018
  • Livestock manure treatments have become a more serious problem because massive environmental pollutions such as green and red tides caused by non-point pollution sources from livestock manures have emerged as a serious social issue. In addition, more food wastes are being produced due to population growth and increased income level. Since the London Convention has banned the ocean dumping of wastes, some other waste treatment methods for land disposal had to be developed and applied. At the same time, researches have been conducted to develop alternative energy sources from various types of wastes. As a result, anaerobic digestion as a waste treatment method has become an attractive solution. In this study has three objectives: first, to identify the physical properties of the mixture of livestock wastewater and food waste when combining food waste treatment with the conventional livestock manure treatment based on anaerobic mesophilic digestion; second, to find the ideal ratio of waste mixture that could maximize the collection efficiency of methane ($CH_4$) from the anaerobic digestion process; and third, to promote $CH_4$ production by comparing the biodegradability. As a result of comparing the reactors R1, R2, and R3, each containing a mixture of food waste and livestock manure at the ratio of 5:5, 7:3, and 3:7, respectively, R2 showed the optimum treatment efficiencies for the removal of Total Solids (TS) and Volatile Solids (VS), $CH_4$ production, and biodegradability.

BMP법에 의한 리그닌의 혐기성 분해 및 GC와 GC/MS을 이용한 리그닌 분해산물 측정 (Anaerobic Biodegradation of Lignin by BMP Test and Measurement of Lignin-derived Compound Using GC & GC/MS)

  • 김석구
    • 유기물자원화
    • /
    • 제16권3호
    • /
    • pp.46-51
    • /
    • 2008
  • 리그닌이 분해되려면 분자형태의 산소를 요구하므로 혐기성 조건에서는 리그닌 분해가 어려운 것으로 알려져 왔다. 리그닌의 존재는 리그닌 분해에 영향을 준다. 리그닌 분해의 초기단계에서는 촉매역할을 하는 효소에 의해 리그닌이 중간산물로 분해되어 이 단계에서는 미생물에 의한 효소생성이 제한인자로 작용하게 된다. 폐수에 영양염을 첨가하고 미생물을 식종하여 폐수 내 유기물의 혐기성 분해정도를 평가할 수 있는 BMP(biochemical methane potential)법이 혐기성 조건하에서 리그닌 분해를 평가하기 위해 이용되고 있다. BMP법에 의해 리그닌을 초기 분해한 후 미생물 활동을 선택적으로 억제할 수 있도록 3% 톨루엔 용액으로 만든다. 이 용액의 리그닌 초기 분해율과 리그닌 분해산물의 축적률을 측정해 리그린의 혐기성 분해특성을 파악할 수 있다.

  • PDF