• Title/Summary/Keyword: An atomic power plant

Search Result 268, Processing Time 0.034 seconds

OVERVIEW OF CONTAINMENT FILTERED VENT UNDER SEVERE ACCIDENT CONDITIONS AT WOLSONG NPP UNIT 1

  • Song, Y.M.;Jeong, H.S.;Park, S.Y.;Kim, D.H.;Song, J.H.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.597-604
    • /
    • 2013
  • Containment Filtered Vent Systems (CFVSs) have been mainly equipped in nuclear power plants in Europe and Canada for the controlled depressurization of the containment atmosphere under severe accident conditions. This is to keep the containment integrity against overpressure during the course of a severe accident, in which the radioactive gas-steam mixture from the containment is discharged into a system designed to remove the radionuclides. In Korea, a CFVS was first introduced in the Wolsong unit-1 nuclear power plant as a mitigation measure to deal with the threat of over pressurization, following post-Fukushima action items. In this paper, the overall features of a CFVS installation such as risk assessments, an evaluation of the performance requirements, and a determination of the optimal operating strategies are analyzed for the Wolsong unit 1 nuclear power plant using a severe accident analysis computer code, ISAAC.

A LONG-TERM FIELD TEST OF A LARGE VOLUME IONIZATION CHAMBER BASED AREA RADIATION MONITORING SYSTEM DEVELOPED AT KAERI

  • Kim, Han-Soo;Ha, Jang-Ho;Park, Se-Hwan;Kim, Jung-Bok;Kim, Young-Kyun;Jin, Hyung-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.2
    • /
    • pp.77-81
    • /
    • 2009
  • An Area Radiation Monitoring System (ARMS) ionization chamber, which had an 11.8 L active volume, was fabricated and performance-tested at KAERI. Low leakage currents, linearities at low and high dose rates were achieved from performance tests. The correlation coefficients between the ionization currents and the dose rates are 1 at high dose rate and 0.99 at low dose rate. In this study, an integration-type ARMS ionization chamber was tested over a year for an evaluation of its long-term stability at a radioisotope (RI) repository of the Young-gwang nuclear power plant. The standard deviation of dose rate of 1 day data and over a 100-days mean value were 6.2 $\mu$R/h and 2.9 $\mu$R/h, respectively. The fabricated ARMS ionization chamber showed stable performance from the results of the long-term tests. Design and performance characteristics of the fabricated ionization chamber for the ARMS from performance-tests are also addressed.

Seismic fragility evaluation of the base-isolated nuclear power plant piping system using the failure criterion based on stress-strain

  • Kim, Sung-Wan;Jeon, Bub-Gyu;Hahm, Dae-Gi;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.561-572
    • /
    • 2019
  • In the design criterion for the nuclear power plant piping system, the limit state of the piping against an earthquake is assumed to be plastic collapse. The failure of a common piping system, however, means the leakage caused by the cracks. Therefore, for the seismic fragility analysis of a nuclear power plant, a method capable of quantitatively expressing the failure of an actual piping system is required. In this study, it was conducted to propose a quantitative failure criterion for piping system, which is required for the seismic fragility analysis of nuclear power plants against critical accidents. The in-plane cyclic loading test was conducted to propose a quantitative failure criterion for steel pipe elbows in the nuclear power plant piping system. Nonlinear analysis was conducted using a finite element model, and the results were compared with the test results to verify the effectiveness of the finite element model. The collapse load point derived from the experiment and analysis results and the damage index based on the stress-strain relationship were defined as failure criteria, and seismic fragility analysis was conducted for the piping system of the BNL (Brookhaven National Laboratory) - NRC (Nuclear Regulatory Commission) benchmark model.

The Effects of Standardization for the Nuclear Power Plants in Korea

  • Kim, Kyoung-Pyo;Kim, Seung-Su;Lee, Young-Gun
    • Journal of Korean Society for Quality Management
    • /
    • v.18 no.2
    • /
    • pp.69-80
    • /
    • 1990
  • This paper highlights the economic effects of nuclear power plants standardization in Korea. The major effects of nuclear power plants standardization appear in the reduction of time-related costs. By using this major economic effects of standardization, an optimal plant mix of electric power until the year 2005 is suggested by means of WASP computer model. And the effects between the standardized case and the non-standardized case is compared.

  • PDF

Production of SCC Flaws and Evaluation Leak Behavior of Steam Generator Tubes (누설 및 파열실험용 SCC 결함 전열관 제작 및 누설거동 평가)

  • Hwang, Seong-Sik;Jung, Man-Kyo;Park, Jang-Yul;Kim, Hong-Pyo
    • Corrosion Science and Technology
    • /
    • v.8 no.5
    • /
    • pp.188-192
    • /
    • 2009
  • A forced outage due to a steam generator tube leak in a Korean nuclear power plant was reported.1) Primary water stress corrosion cracking has occurred in many tubes in the plant, and they were repaired using sleeves or plugs. In order to develop proper repair criteria, it is necessary to understand the leak behavior of the tubes containing stress corrosion cracks. Stress corrosion cracks were developed in 0.1 M sodium tetrathionate solution at room temperature. Steam generator(SG) tubes with short cracks were successfully fabricated with a restricted solution contact method. The leak rates of the degraded tubes were measured at room temperature. Some tubes with 100 % through wall cracks showed an increase of leak rate with time at a constant pressure.

Reevaluation of Seismic Fragility Parameters of Nuclear Power Plant Components Considering Uniform Hazard Spectrum

  • Park, In-Kil;Choun, Young-Sun;Seo, Jeong-Moon;Yun, Kwan-Hee
    • Nuclear Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.586-595
    • /
    • 2002
  • The Seismic probabilistic risk assessment (SPRA) or seismic margin assessment (SMA) have been used for the seismic safety evaluation of nuclear power plant structures and equipments. For the SPRA or SMA, the reference response spectrum should be defined. The site-specific median spectrum has been generally used for the seismic fragility analysis of structures and equipments in a Korean nuclear power plant Since the site-specific spectrum has been developed based on the peak ground motion parameter, the site-specific response spectrum does not represent the same probability of exceedance over the entire frequency range of interest. The uniform hazard spectrum is more appropriate to be used in seismic probabilistic risk assessment than the site- specific spectrum. A method for modifying the seismic fragility parameters that are calculated based on the site-specific median spectrum is described. This simple method was developed to incorporate the effects of the uniform hazard spectrum. The seismic fragility parameters of typical NPP components are modified using the uniform hazard spectrum. The modification factor is used to modify the original fragility parameters. An example uniform hazard spectrum is developed using the available seismic hazard data for the Korean nuclear power plant (NPP) site. This uniform hazard spectrum is used for the modification of fragility parameters.

Ordering of Alloy 690 Steam Generator Tubings in a Nuclear Power Plant (원자력발전소 증기발생기 Alloy 690 전열관 재료의 규칙화 반응)

  • Seong Sik Hwang;Min Jae Choi;Sung Woo Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.214-219
    • /
    • 2023
  • Considering the case in the United States where most nuclear power plants with an initial design life of 40 years continue to operate until 60 or 80 years after undergoing material soundness evaluation, it is time to plan a more robust long-term operation strategy for nuclear power plants in Korea. There are some reports that SRO/LRO might be formed when Alloy 690 is heat treated for 10,000 hours to 100,000 hours at 360 to 450 ℃. The possibility of LRO formation in Alloy 690 steam generator tubings of Kori nuclear power plant unit 1 (Kori-1) was investigated using existing research papers. The mechanism in which SRO/LRO occurred was also surveyed. Alloy 690 was found to be more likely to cause ordering than Alloy 600 in terms of alloy composition. The ordering could be evaluated through changes in material properties. However, it is difficult to evaluate it from a microstructural point of view. The likelihood of LRO in Alloy 690 of the Kori-1 plant operated at 320 ℃ for 19 years seemed to be low in terms of time and exposure temperature.

Development of logical structure for multi-unit probabilistic safety assessment

  • Lim, Ho-Gon;Kim, Dong-San;Han, Sang Hoon;Yang, Joon Eon
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1210-1216
    • /
    • 2018
  • Site or multi-unit (MU) risk assessment has been a major issue in the field of nuclear safety study since the Fukushima accident in 2011. There have been few methods or experiences for MU risk assessment because the Fukushima accident was the first real MU accident and before the accident, there was little expectation of the possibility that an MU accident will occur. In addition to the lack of experience of MU risk assessment, since an MU nuclear power plant site is usually very complex to analyze as a whole, it was considered that a systematic method such as probabilistic safety assessment (PSA) is difficult to apply to MU risk assessment. This paper proposes a new MU risk assessment methodology by using the conventional PSA methodology which is widely used in nuclear power plant risk assessment. The logical failure structure of a site with multiple units is suggested from the definition of site risk, and a decomposition method is applied to identify specific MU failure scenarios.

An Application of Realistic Evaluation Model to the Large Break LOCA Analysis of Ulchin 3&4

  • C. H. Ban;B. D. Chung;Lee, K. M.;J. H. Jeong;S. T. Hwang
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.429-434
    • /
    • 1996
  • K-REM[1], which is under development as a realistic evaluation model of large break LOCA, is applied to the analysis of cold leg guillotine break of Ulchin 3&4. Fuel parameters on which statistical analysis of their effects on the peak cladding temperature (PCT) are made and system parameters on which the concept of limiting value approach (LVA) are applied, are determined from the single parameter sensitivity study. 3 parameters of fuel gap conductance, fuel thermal conductivity and power peaking factor are selected as fuel related ones and 4 parameters of axial power shape, reactor power, decay heat and the gas pressure of safety injection tank (SIT) are selected as plant system related ones. Response surface of PCT is generated from the plant calculation results and on which Monte Carlo sampling is made to get plant application uncertainty which is statistically combined with code uncertainty to produce the 95th percentile PCT. From the break spectrum analysis, blowdown PCT of 1350.23 K and reflood PCT of 1195.56 K are obtained for break discharge coefficients of 0.8 and 0.5, respectively.

  • PDF

RHODIUM SELF-POWERED NEUTRON DETECTOR'S LIFETIME FOR KOREAN STANDARD NUCLEAR POWER PLANTS

  • YOO CHOON SUNG;KIM BYOUNG CHUL;PARK JONG-HO;FERO ARNOLD H.;ANDERSON S. L.
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.605-610
    • /
    • 2005
  • A method to estimate the relative sensitivity of a self-powered rhodium detector for an upcoming cycle is developed by combining the rhodium depletion data from a nuclear design with the site measurement data. This method can be used both by nuclear power plant designers and by site staffs of Korean standard nuclear power plants for determining which rhodium detectors should be replaced during overhauls.