• 제목/요약/키워드: An antifungal activity

Search Result 437, Processing Time 0.033 seconds

Isolation and structure elucidation of antifungal compounds from the antarctic lichens, Stereocaulon alpinum and Sphaerophorus globosus

  • Kim, Young-Shin;Lim, Chi-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.1
    • /
    • pp.183-191
    • /
    • 2020
  • Lichens are composite organisms consisting of a symbiotic association of a fungus with a photosynthetic partner (the photobiont or phycobiont), usually either a green alga or cyanobacterium. According to more recent studies, the biological activities of lichens and lichen substances include an antibiotic activity, antitumor and antimutagenic activity against human immunodeficiency virus (HIV), allergenic activity, plant growth inhibitory activity, and enzyme inhibitory activity. This study screened lichen extracts with a potent in vitro antifungal activity against plant diseases caused by phytopathogenic fungi. The compounds were isolated from Stereocaulon alpinum and Sphaerophorus globosus, and their chemical structures were identified as methyl hematommate, methyl β-orsellinate, 5-hydroxyferulic acid, sphaerophorin, and 2-heptyl-4,6-dimethoxybenzoic acid by electron ionization mass spectrometry (EI-MS) and nuclear magnetic resonance (NMR) spectral analyses. In vitro disease control against Alternaria mali, Cochliobolus miyabeanus, Colletotrium gloeosporioides, and Verticillum dahliae was evaluated. And among the five compounds, only methyl hematommate was effective against A. mali, C. miyabeanus, and C. gloeosporioides. The compounds were isolated from these lichens, which have a similar biosynthetic pathway, respectively. This is the first report of these compounds being isolated from these lichens.

Candicidal Action of Resveratrol Isolated from Grapes on Human Pathogenic Yeast C. albicans

  • Jung, Hyun-Jun;Seu, Young-Bae;Lee, Dong-Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1324-1329
    • /
    • 2007
  • Resveratrol (3,5,4'-trihydroxystilbene) is a naturally occurring, multi-biofunctional chemical existing in grapes and various other plants as a polyphenol type, and it is one of the best known natural anticancer and antiatherosclerosis reagents. In this study, we investigated the antifungal action by resveratrol in Candida albicans, which is a human infectious fungi as an agent of candidiasis. Resveratrol displayed potent fungicidal activity in an energy-dependent manner, without any hemolytic effects against human erythrocytes. It was found that the serum-induced mycelial forms, which playa crucial role in the pathogenesis of C. albicans during host tissue invasion, were disrupted by resveratrol. To understand the correlation between lethal effects and resveratrol action, we examined the physiological changes of C. albicans. A significant accumulation of intracellular trehalose was induced by stress responses to resveratrol action, and a remarkable arrest of cell-cycle processes at the S-phase in C. albicans occured. Therefore, the fungicidal effects of resveratrol demonstrate that this compound is a potential candidate as an antifungal agent in treating infectious diseases by candidal infections.

In Vitro Antifungal Activity of (1)-N-2-Methoxybenzyl-1,10-phenanthrolinium Bromide against Candida albicans and Its Effects on Membrane Integrity

  • Setiawati, Setiawati;Nuryastuti, Titik;Ngatidjan, Ngatidjan;Mustofa, Mustofa;Jumina, Jumina;Fitriastuti, Dhina
    • Mycobiology
    • /
    • v.45 no.1
    • /
    • pp.25-30
    • /
    • 2017
  • Metal-based drugs, such as 1,10-phenanthroline, have demonstrated anticancer, antifungal and antiplasmodium activities. One of the 1,10-phenanthroline derivatives compounds (1)-N-2-methoxybenzyl-1,10-phenanthrolinium bromide (FEN), which has been demonstrated an inhibitory effect on the growth of Candida spp. This study aimed to explore the in vitro antifungal activity of FEN and its effect on the membrane integrity of Candida albicans. The minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) of FEN against planktonic C. albicans cells were determined using the broth microdilution method according to the Clinical and Laboratory Standards Institute guidelines. Cell membrane integrity was determined with the propidium iodide assay using a flow cytometer and were visualized using scanning electron microscopy (SEM). Planktonic cells growth of C. albicans were inhibited by FEN, with an MIC of $0.39-1.56{\mu}g/mL$ and a MFC that ranged from 3.125 to $100{\mu}g/mL$. When C. albicans was exposed to FEN, the uptake of propidium iodide was increased, which indicated that membrane disruption is the probable mode of action of this compound. There was cells surface changes of C. albicans when observed under SEM.

Isolation, Identification and Optimal Culture Condition of Bacillus sp. FF-9 Having Antifungal on the Turf Grass Pathogens Caused by Rhizoctonia solani AGII-II (Rhizoctonia solani AGII-II에 대한 항진균 활성을 가지는 Bacillus sp. FF-9의 분리.동정 및 최적 배양조건)

  • Park, Jin-Chul;Yoo, Ji-Hyun;Cha, Jae-Young;Kim, Min-Seok;Cho, Young-Su
    • Applied Biological Chemistry
    • /
    • v.47 no.4
    • /
    • pp.373-378
    • /
    • 2004
  • In this study, established soil-borne Bacillus sp. FF-9 with strong antifungal activity was isolated for identification and to determine optimal culture condition. By using 16s rDNA sequencing method, FF-9 of the selected bacteria was identified as genus Bacillus sp., Bacillus sp. FF-9 was cultured at $30^{\circ}C$, for 24 h in the LB medium. Cell growth increased quickly after 6 h and the highest cell growth was indicated at 12 h. The most antifungal activity against Rhizoctoina solani AGII-II appeared at 18 h and the optimal temperature and pH were 30 and pH 8.0, respectively. A testing of carbon and nitrogen sources showed the highest antifungal activity at 1% lactose and 1% yeast extract Furthermore an addition of salt showed the most antibiotic activity in the 0.15% $K_2HPO_4$.

Antimicrobial Activity of Korean Propolis Extracts on Oral Pathogenic Microorganisms

  • Roh, Jiyeon;Kim, Ki-Rim
    • Journal of dental hygiene science
    • /
    • v.18 no.1
    • /
    • pp.18-23
    • /
    • 2018
  • Propolis has been used as a natural remedy in folk medicine worldwide. The antibacterial, antiviral, antifungal, and antiprotozoal aspects of its antimicrobial properties have been widely investigated. However, few studies focused on its applications in dentistry. Many dental diseases are related to various microorganisms in the oral cavity. In this study, we assessed the antimicrobial activity of Korean propolis extract, collected from 6 different regions, on oral pathogenic microorganisms. The propolis samples, collected from 6 different regions (P1: Uijeongbu, P2: Ansan, P3: Hongcheon, P4: Iksan, P5: Gwangju, and P6: Sangju), were dissolved in ethanol at two different concentrations (10 and 50 mg/ml). Three oral bacteria (Streptococcus mutans, Staphylococcus aureus, and Enterococcus faecalis) and one fungus (Candida albicans) were activated in general broth for 24 hours. Microorganisms were diluted and spread onto agar plates, onto which sterilized 6 mm filter papers with or without each propolis sample were placed. After 24 hours of incubation, clear zones of inhibition were observed. All tests were performed in triplicate. The propolis samples showed significant antibacterial and antifungal activity on oral pathogenic microorganisms; in addition, low-concentration groups showed outstanding antimicrobial efficacy on the 4 different microorganisms. Among the samples, P6 had significantly higher antibacterial activity than that of the others against three different bacteria. In particular, a high concentration of P6 showed a significant antifungal effect. In conclusion, we confirmed that Korean propolis has an inhibitory effect on oral pathogenic bacteria and fungi. Therefore, we suggest the possibility of developing oral medicine and oral care products based on Korean propolis.

Isolation of Antifungal Active Compounds from the Leaves of Lindera erythrocarpa (비목나무(Lindera erythrocarpa) 잎으로부터 항진균성 활성물질의 분리)

  • Kwon, Sun-Youl;Kim, Jin-Ho;Baek, Nam-Ln;Choi, Gyung-Ja;Cho, Kwang-Yun;Lee, Byung-Moo;Choi, Yong-Hwa
    • Applied Biological Chemistry
    • /
    • v.46 no.2
    • /
    • pp.150-153
    • /
    • 2003
  • Methanol extract obtained from Lindera erythocarpa leaves was successively fractionated with n-hexane, ethylacetate, n-butanol, and $H_2O$. From ethylacetate fraction, an active fraction was isolated through repeated silica gel column chromatography and recrystallization, and was identified as a stereoisomer complex of methyllucidone by MS and MMR analyses. The complex showed 85% antifungal activity at 50 {\mu}g/ml$ against the disease wheat leaf rust.

Antifungal Activity of Paenibacillus kribbensis Strain T-9 Isolated from Soils against Several Plant Pathogenic Fungi

  • Xu, Sheng Jun;Hong, Sae Jin;Choi, Woobong;Kim, Byung Sup
    • The Plant Pathology Journal
    • /
    • v.30 no.1
    • /
    • pp.102-108
    • /
    • 2014
  • The bacterial strain T-9, which shows strong antifungal activity, is isolated from the soils of Samcheok, Gangwondo and identified as Paenibacillus kribbensis according to morphological and taxonomic characteristics and 16S rRNA gene sequence analysis. The P. kribbensis strain T-9 strongly inhibits the growth of various phytopathogenic fungi including Botrytis cinerea, Colletotricum acutatum, Fusarium oxysporum f. sp. radicis-lycopersici, Magnaporthe oryzae, Phytophthora capsici, Rhizoctonia solani, and Sclerotium cepivorum in vitro. Also, the P. kribbensis strain T-9 exhibited similar or better control effects to plant diseases than in fungicide treatment through in vivo assays. In the 2-year greenhouse experiments, P. kribbensis strain T-9 was highly effective against clubroot. In the 2-year field trials, the P. kribbensis strain T-9 was less effective than the fungicide, but reduced clubroot on Chinese cabbage when compared to the control. The above-described results indicate that the strain T-9 may have the potential as an antagonist to control various phytopathogenic fungi.

Isolation and Synthesis of an Antifungal Metabolite Derived from the Commensal Vaginal Bacterium Dermabacter vaginalis (질 내 공생세균 Dermabacter vaginalis 유래 항진균 대사체의 분리 및 합성)

  • So, Jae Seong;Kwon, Kang Mu;Lee, Munseon;Kim, Dae Keun;Hwang, In Hyun
    • Korean Journal of Pharmacognosy
    • /
    • v.53 no.3
    • /
    • pp.119-124
    • /
    • 2022
  • Vaginal microbiome deeply influences vaginal health via production of messenger molecules. The healthy vaginal pH ranges between 3.5 and 4.5. However, dysbiosis of vaginal microbiome increases the pH level, leading to the incidence of vaginitis. The commensal vaginal bacterium Dermabacter vaginalis-which was isolated from the vaginal fluid of a Korean female-was incubated in acidic and neutral pH to simulate healthy and vaginitis conditions, respectively. The chemical profiles of the two different cultures were compared using HPLC. The compound showing distinctive difference between the two sets of data was presumed to be a chemical messenger, which was identified as cyclo(L-pro-L-met) by analysis of NMR, MS, and specific rotation data. Synthesis was achieved in three steps (overall yield 15%), enabling structure confirmation and antimicrobial evaluation against vaginal pathogens. Cyclo(L-pro-L-met) showed antifungal activity against Candida albicans, a major cause of vulvovaginal candidiasis.

Construction of a Recombinant Bacillus velezensis Strain as an Integrated Control Agent Against Plant Diseases and Insect Pests

  • Roh, Jong-Yul;Liu, Qin;Choi, Jae-Young;Wang, Yong;Shim, Hee-Jin;Xu, Hong Guang;Choi, Gyung-Ja;Kim, Jin-Cheol;Je, Yeon-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1223-1229
    • /
    • 2009
  • To construct a new recombinant strain of Bacillus velezensis that has antifungal and insecticidal activity via the expression of the insecticidal Bacillus thuringiensis crystal protein, a B. thuringiensis expression vector (pHT1K-1Ac) was generated that contained the B. thuringiensis cry1Ac gene under the control of its endogenous promoter in a minimal E. coli-B. thuringiensis shuttle vector (pHT1K). This vector was introduced into a B. velezensis isolate that showed high antifungal activities against several plant diseases, including rice blast (Magnaporthe grisea), rice sheath blight (Rhizotonia solani), tomato gray mold (Botrytis cinerea), tomato late blight (Phytophthora infestans), and wheat leaf rust (Puccinia recondita), by electroporation. The recombinant B. velezensis strain was confirmed by PCR using cry1Ac-specific primers. Additionally, the recombinant strain produced a protein approximately 130 kDa in size and parasporal inclusion bodies similar to B. thuringiensis. The in vivo antifungal activity assay demonstrated that the activity of the recombinant B. velezensis strain was maintained at the same level as that of wild-type B. velezensis. Furthermore, it exhibited high insecticidal activity against a lepidopteran pest, Plutella xylostella, although its activity was lower than that of a recombinant B. thuringiensis strain, whereas wild-type B. velezensis strain did not show any insecticidal activity. These results suggest that this recombinant B. velezensis strain can be used to control harmful insect pests and fungal diseases simultaneously in one crop.

Characterization and Structural Dtercination of an Antifungal Compound Produced by Pseudomonas aeruginosa KGM-100 (Pseudomonas aeruginosa KGM-100이 생산하는 항생물질의 특성 및 구조)

  • Kim, Kyung-Seok;Hong, Su-Hyung;Lee, Eun-Ju;Park, Yong-Bok;Park, Yong-Tae;Ha, Ji-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.1
    • /
    • pp.98-103
    • /
    • 1995
  • During the screening of antifungal antibiotics from microbial metabolites, we selected Pseudomonas aeruginosa KGM-100 showing powerful antagonistic activity against various phytopathogenic fungi. Antibiotics KGM-100A and KGM-100B were purified from the culture broth of Pseudomonas aeruginosa KGM-100 by diaion HP-20 column chromatography, ethyl acetate extraction, silica gel column chromatography, preparative TLC and recrystallization. KGM-100A which was recrystallized in MeOH showed antimicrobial activities against a broad spectrum of fungi and bacteria. Physico-chemical properties of KGM-100A were determined and identified to be phenazine-l-carboxylic acid by UV, IR, $^{1}$H-NMR, $^{13}$C-NMR, mass spectrum, and elemental analyses.

  • PDF