• Title/Summary/Keyword: Amylose

Search Result 707, Processing Time 0.029 seconds

Effect of Heat Treatments on in vitro Starch Hydrolysis of Selected Grains (가열처리가 잡곡류의 in vitro 전분가수분해율에 미치는 영향)

  • Lee, Young-Tack
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.8
    • /
    • pp.1102-1105
    • /
    • 2006
  • The effect of heat treatments on in vitro starch hydrolysis of proso millet, sorghum, Job's tears, and buckwheat by pancreatic ${\alpha}-amylase$ was investigated. Grain samples were tested raw, boiled in water, or steamed/roasted. Starch content of the grains varied from 59.5% in Job's tears to 65.5% in proso millet, and amylose content varied from 5.3% in Job's tears to 36.3% in buckwheat. The in vitro starch hydrolysis of raw and heat-treated grains continuously increased during 60 min of hydrolysis. The starch hydrolysis (%) of raw grains after 60 min incubation was in the order of buckwheat (5.7%), proso millet (33.0%), Job's tears (51.2%), and sorghum (57.6%). Grains treated with steaming/roasting appeared to have higher starch hydrolysis rates than those with boiling except proso millet. Hydrolysis rates of buckwheat with a high amylose content appeared to be lower, compared to proso millet, sorghum, and Job's tears containing low amylose contents.

Studies on the Improvement of Milling, Quality and Storage of Tongil (Indica Type) Rice -Part II. Properties of Tongil Rice Starch- (통일벼의 도정과 품질 및 저장개선 방안에 관한 연구 -제2보 통일쌀 녹말의 특성-)

  • Chung, Dong-Hyo;Lee, Hyun-Yoo
    • Korean Journal of Food Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.179-184
    • /
    • 1976
  • Properties of starch from three rice varieties in Korea, Indica types Tongil, Yusin and a Japonica type Jinheung were investigated. 1) Gelatinization temperatures of Tongil, Yushin and Jinheung rice were $72^{\circ}C,\;70^{\circ}C\;and\;68{\sim}69^{\circ}C$ respectively. Gelatinization temperature of Indica variety was higher than that of Japonica variety. 2) Blue values of Tongil, Yusin and Jinheung rice starch were 0.40, 0.39 and 0.35 respectively, in which differences among rice varieties were small. 3) Color intensity of three varieties of rice starch with iodine gave rise to absorption maxima at $610{\sim}625\;nm$. 4) Amylose contents of Tongil, Yusin and Jinheung rice starch were 23.2%, 21.3% and 20.6% respectively, which were lower than those of other cereals. Amylose content of Indica variety was higher than that of Japonica variety. 5) Alkali numbers of Tongil, Yusin and Jinheung rice starchs were 7.0, 7.0 and 6.8, respectively. The differences were negligible among rice varieties. Those values were higher than that of glutinous rice starch.

  • PDF

Effects of Amylose Content on Properties of Lintnerized Maize Starches and Yield of Resistant Starch (아밀로오스 함량이 산처리 옥수수전분의 특성 및 저항전분수율에 미치는 영향)

  • Lee, Shin-Kyung;Shin, Mal-Shick
    • Applied Biological Chemistry
    • /
    • v.40 no.5
    • /
    • pp.395-399
    • /
    • 1997
  • Lintnerization properties and yield of enzyme-resistant starch in maize starches with different amylose content were investigated. Hydrolytic patterns of starches showed two distinct stages. With decreasing the amylose content, hydrolysis extents of starch increased. X-ray diffraction patterns of Amloca, PFP and commercial maize starch were the A crystalline type, and those of Amaizo 5 and Amylomaize VII were the B crystalline type. As acid hydrolysis time increased, the relative crystallinity of starches increased. After heating-cooling treatment was repeated up to 4 times, the yield of RS increased with increasing the amylose content. The yields of RS in lintnerzed maize starches decreased with acid treatment.

  • PDF

Effect of Heat-Moisture Treatment of Domestic Rice Flours Containing Different Amylose Contents on Rice Noodle Quality (아밀로오스 함량이 다른 국내산 쌀가루의 수분-열처리가 쌀국수 품질에 미치는 영향)

  • Seo, Hye-In;Ryu, Bog-Mi;Kim, Chang-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.11
    • /
    • pp.1597-1603
    • /
    • 2011
  • The influence of heat-moisture treatment (HMT) and substitution of rice flour containing different amylose contents on the quality characteristics of rice noodles was investigated. HMT was applied to rice flours with 21% moisture content at 100 and 105$^{\circ}C$ for 30 min. Three rice cultivars were used, including high amylose of Goami (GM) and intermediate amylose of Choochung (CC) as domestic rice flours and imported rice of Taeguk (TG) as a control. HMT and substitution of rice flour with different amylose contents affected the cooking and texture quality of rice noodles. When rice noodles were made of intermediate amylose rice flour with HMT, cooking properties improved with decreased cooking loss and cooking water turbidity and thus were closer to those of control. Especially, the hardness, adhesiveness, tensile strength, and darkness of rice noodles notably increased when HMT rice flour was used. Based on the results of quantitative descriptive analysis for selected rice noodles, the noodles made of HMT CC at 105$^{\circ}C$ (CC105) had high scores for resilience and adhesiveness and low scores for hardness compared with imported commercial rice noodles and other experimental noodles such as TG, HMT GM100, TG+CC, and TG+CC105. In conclusion, rice noodles were made of composite flours containing high amylose and intermediate amylose contents or HMT intermediate amylose content rice flour.

Quantification of Protein and Amylose Contents by Near Infrared Reflectance Spectroscopy in Aroma Rice (근적외선 분광분석법을 이용한 향미벼의 아밀로스 및 단백질 정량분석)

  • Kim, Jeong-Soon;Song, Mi-Hee;Choi, Jae-Eul;Lee, Hee-Bong;Ahn, Sang-Nag
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.603-610
    • /
    • 2008
  • The principal objective of current study was to evaluate the potential of near infrared reflectance spectroscopy (NIRS) as a non-destructive method for the prediction of the amylose and protein contents of un-hulled and brown rice in broad-based calibration models. The average amylose and protein content of 75 rice accessions were 20.3% and 7.1%, respectively. Additionally, the range of amylose and protein content were 16.6-24.5% and 3.8-9.3%, respectively. In total, 79 rice germplasms representing a wide range of chemical characteristics, variable physical properties, and origins were scanned via NIRS for calibration and validation equations. The un-hulled and brown rice samples evidenced distinctly different patterns in a wavelength range from 1,440 nm to 2,400 nm in the original NIR spectra. The optimal performance calibration model could be obtained by MPLS (modified partial least squares) using the first derivative method (1:4:4:1) for un-hulled rice and the second derivative method (2:4:4:1) for brown rice. The correlation coefficients $(r^2)$ and standard error of calibration (SEC) of protein and amylose contents for the un-hulled rice were 0.86, 2.48, and 0.84, 1.13, respectively. The $r^2$ and SEC of protein and amylose content for brown rice were 0.95, 1.09 and 0.94, 0.42, respectively. The results of this study suggest that the NIRS technique could be utilized as a routine procedure for the quantification of protein and amylose contents in large accessions of un-hulled rice germplasms.

Quantitative Analysis of Amylose and Protein Content of Rice Germplasm in RDA-Genebank by Near Infrared Reflectance Spectroscopy (근적외선 분광분석법을 이용한 벼 유전자원의 아밀로스 함량과 단백질 함량 정량분석)

  • Kim, Jeong-Soon;Cho, Yang-Hee;Gwag, Jae-Gyun;Ma, Kyung-Ho;Choi, Yu-Mi;Kim, Jung-Bong;Lee, Jeong-Heui;Kim, Tae-San;Cho, Jong-Ku;Lee, Sok-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.2
    • /
    • pp.217-223
    • /
    • 2008
  • Amylose and protein contents are important traits determining the edible quality of rice, especially in East Asian countries. Near-Infrared Reflectance Spectroscopy (NIRS) has become a powerful tool for rapid and nondestructive quantification of natural compounds in agricultural products. To test the practically of using NIRS for estimation of brown rice amylose and protein contents, the spectral reflectances ($400{\sim}2500\;nm$) of total 9,483 accessions of rice germplasm in Rural development Administration (RDA) Genebank ere obtained and compared to chemically determined amylose and protein content. The protein content of tested 119 accessions ranged from 6.5 to 8.0% and 25 accessions exhibited protein contents between 8.5 to 9.5%. In case of amylose content, all tested accessions ranged from 18.1 to 21.7% and the grade from 18.1 to 19.9% includes most number of accessions as 152 and 4 accessions exhibited amylose content between 20.5 to 21.7%. The optimal performance calibration model could be obtained from original spectra of brown rice using MPLS (Modified Partial Least Squares) with the correlation coefficients ($r_2$) for amylose and protein content were 0.865 and 0.786, respectively. The standard errors of calibration (SEC) exhibited good statistic values: 2.078 and 0.442 for amylose and protein contents, respectively. All these results suggest that NIR spectroscopy may serve as reputable and rapid method for quantification of brown rice protein and amylose contents in large numbers of rice germplasm.

Development of Near-Infrared Reflectance Spectroscopy (NIRS) Model for Amylose and Crude Protein Contents Analysis in Rice Germplasm (근적외선 분광광도계를 이용한 벼 유전자원 아밀로스 및 단백질 함량분석을 위한 모델개발)

  • Oh, Sejong;Lee, Myung Chul;Choi, Yu Mi;Lee, Sukyeung;Oh, Myeongwon;Ali, Asjad;Chae, Byungsoo;Hyun, Do Yoon
    • Korean Journal of Plant Resources
    • /
    • v.30 no.1
    • /
    • pp.38-49
    • /
    • 2017
  • The objective of this research was to develop Near-Infrared Reflectance Spectroscopy (NIRS) model for amylose and protein contents analysis of large accessions of rice germplasm. A total of 511 accessions of rice germplasm were obtained from National Agrobiodiversity Center to make calibration equation. The accessions were measured by NIRS for both brown and milled brown rice which was additionally assayed by iodine and Kjeldahl method for amylose and crude protein contents. The range of amylose and protein content in milled brown rice were 6.15-32.25% and 4.72-14.81%, respectively. The correlation coefficient ($R^2$), standard error of calibration (SEC) and slope of brown rice were 0.906, 1.741, 0.995 in amylose and 0.941, 0.276, 1.011 in protein, respectively, whereas $R^2$, SEC and slope of milled brown rice values were 0.956, 1.159, 1.001 in amylose and 0.982, 0.164, 1.003 in protein, respectively. Validation results of this NIRS equation showed a high coefficient determination in prediction for amylose (0.962) and protein (0.986), and also low standard error in prediction (SEP) for amylose (2.349) and protein (0.415). These results suggest that NIRS equation model should be practically applied for determination of amylose and crude protein contents in large accessions of rice germplasm.

Comparison of Korean and Japanese Rice Cultivars in Terms of Physicochemical Properties (II) The Comparison of Korean and Japanese Rice by Amylose Content and Cooking Characteristics (한국 쌀과 일본 쌀의 물리화학적 특성 연구 (II) 아밀로즈 함량과 조리특성의 차이에 의한 품질비교)

  • 김혁일
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.14 no.2
    • /
    • pp.145-155
    • /
    • 2004
  • From the cooking data, Japanese rice showed higher water uptake but lower expansion volume, pH and iodine blue value than those of Korean rice. Japanese rice had higher maximum viscosity, breakdown viscosity and pasting temperature but lower final viscosity and setback viscosity than those of Korean rice by RVA analysis. Japanese rice had higher LC (low compression) hardness, U stickiness and HC (high compression) stickiness, LC balance and HC balance, but had lower HC hardness and thickness in the tensipresser data. Also Japanese rice had higher stickiness and balance, and lower hardness from the texturometer analysis. Japanese rice showed higher a cooked taste score than that of the Satake cooked taste machine. The various mean values of Japanese rice after cooking showed better cooking characteristics than the Korean rice. These results might be caused because Japanese rice had a little lower amylose and protein content, but higher tat acidity content.

  • PDF

Interrelation between Physicochemical Properties of Milled Rice and Retrogradation of Rice Bread during COld Storage (쌀의 이화학적 특성과 저장 쌀빵의 노화성과의 관계)

  • 강미영;최영희;최해춘
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.5
    • /
    • pp.886-891
    • /
    • 1997
  • The interrelation between physicochemical properties of milled rice and retrogradation of rice bread during cold storage was examined to compare the varietal difference in maintenance of rice bread quality. Twelve rice materials showed big varietal difference on physicochemical properties of rice starch such as amylose content(0.0~29.2%), gel consistency(20~98mm), and alkali digestion value(2.0~7.0). Rice bread made from milled rice of Jungwonbyeo, AC 27 and IRAT 177 exhibited soft texture and late retrogradation of rice bread during cold storage(4$^{\circ}C$). The amylose content of milled rice was closely associated with gel consistency negatively and with springiness of rice bread positively. The retrogradation of rice bread texture during cold storage was correlated with gel consistency of rice flour positively and with alkali digestion value of milled rice negatively.

  • PDF

Characteristics of the Amylase and its Related Enzymes Produced by Ectomycorrhizal Fungus Tricholoma matsutake

  • Hur, Tae-Chul;Ka, Kang-Hyun;Joo, Sung-Hyun;Terashita, Takao
    • Mycobiology
    • /
    • v.29 no.4
    • /
    • pp.183-189
    • /
    • 2001
  • Extracellular amylase properties were examined with the mycelium of Tricholoma matsutake isolated from ectomycorrhizal roots of Pinus densiflora. The molecular weights of $\alpha$-amylase and glucoamylase were estimated as 34.2 kD and 11.5 kD, respectively, after eluted through Superdex 75 column. The optimum pH of the purified enzyme was found in a range of pH $5.0{\sim}6.0$, with a peak at pH 5.0. The activities of these enzymes were stable from $4^{\circ}C\;to\;30^{\circ}C$. The $\alpha$-amylase of T. matsutake readily hydrolyzed soluble starch and amylose-B, while it weakly hydrolyzed glycogen, dextrin, amylose and amylose-A. The main products of hydrolysis were confirmed to be glucose, maltose and maltotriose on the basis of the similarities in the thin layer chromatographic mobility.

  • PDF