• 제목/요약/키워드: Amyloid precursor protein (APP)

검색결과 92건 처리시간 0.03초

Potential Role of Anti-inflammation by Red Ginseng in Rat Microglia

  • Yoo, Yeong-Min;Joo, Seong-Soo;Lee, Seon-Goo;Lee, Do-Ik
    • 동의생리병리학회지
    • /
    • 제19권1호
    • /
    • pp.242-245
    • /
    • 2005
  • The most common feature of neurodegenerative disease (i.e. Alzheimer's disease, AD) is the increased number of activated microglial cells nearby the pathogenic area of the brain, such as amyloid plaque in AD. An abnormality of protein regulation and an imbalance of clearance against ${\beta}-amyloid\;(A{\beta})$ produced amyloid precursor protein (APP) can turn microglia into the activated feature out of the ramified resting phase. We examined the possibility that ginsenoside Rb1 could attenuate the microglial activation induced by massive $A{\beta}$ that has known to induce a chronic inflammation, which is a major cause of AD by damaging neuronal cells (i.e. apoptosis or necrosis). Aggregated $A{\beta}42\;(5\;{\mu}M)$ peptide was used with lipopolysaccharide (LPS) ($10\;{\mu}g$) for a comparative control up to 48hours. We found that Rb1 reduced the production of nitric oxide as well as proinflammatory cytokines, such as $IL-1{\beta}$ and $TNF-{\alpha}$.

Neuroprotective effects of Paeonia lactiflora and its active compound paeoniflorin against Aβ25-35-induced neurotoxicity in SH-SY5Y cells

  • Nam, Mi Na;Kim, Ji-Hyun;Lee, Ah Young;Cho, Eun Ju
    • Journal of Applied Biological Chemistry
    • /
    • 제64권2호
    • /
    • pp.105-112
    • /
    • 2021
  • Excessive accumulation of the amyloid beta (Aβ) peptide has been implicated in the pathogenesis of Alzheimer's disease (AD). Paeonia lactiflora (PL) has been used in treatments of several conditions such as inflammation, arthritis, and cognitive impairment. The purpose of this study was to investigate the neuroprotective effect and mechanisms of PL and its active compound, paeoniflorin (PF), on Aβ25-35-induced neurotoxicity in SH-SY5Y cells. We evaluated cell viability, lactate dehydrogenase (LDH) release and reactive oxygen species (ROS) production. Furthermore, underlying mechanism of PL and PF on the regulation of amyloidogenic pathway was analyzed by Western blotting. In our results, Aβ25-35-induced neuronal cell loss was observed, whereas treatment with PL (10, 50, and 100 ㎍/mL) and PF (1, 5, and 10 ㎍/mL) significantly elevated the cell viability, and decreased LDH release and ROS production. In addition, exposure of SH-SY5Y cells to Aβ25-35 significantly increased the protein levels of amyloid precursor protein (APP)-C-terminal fragment β, β-site APP-cleaving enzyme, and presenilin-1 and -2. However, treatment with PL and PF inhibited the amyloidogenic pathway via the down-regulation of those protein expressions. Taken together, our results indicate that PL, and its active compound PF, could protect SH-SY5Y cells against Aβ25-35-induced cell neurotoxicity by attenuating LDH release and ROS production, and these effects may be attributed to regulation of amyloidogenic pathway-related protein expression. In conclusion, PL and PF could be a potential to prevent neurodegenerative disorders such as AD.

치매의 병리(病理), 연구동향(硏究動向)과 향후(向後) 연구전략(硏究戰略)에 대(對)한 고찰(考察) (Study on pathology of Alzheimer's disease, trends and future strategy for research)

  • 오영선;김성훈
    • 혜화의학회지
    • /
    • 제8권1호
    • /
    • pp.793-825
    • /
    • 1999
  • For the development of drugs for alzheimer,s disease, the study was done to review the oriental pathology, clinical data, recent trends for research and strategy for future study. The results were as follows: 1. The medical term Chi-dsi implying alzheimer,s disease was referred for the first time in a medical book, Hwatasheneubijeon written by Hwa-Ta and its differentiation and treatment were studied more in Ming or Ching dynasties. Chi-dai can be differentated as weak(虛) syndrome and Shi(實) syndrome. This can be caused by deficiencies of renal Yin, renal Yang, cardiac Yin and hepatic blood, while that by deficiencies of pathological fluid(痰飮) and clotted blood(瘀血). 2. Dementia can be roughly classified as alzheimer's disease and multi-infarct disease. Its causes were known to be cholinergic transmitter, C-peptide, amyloid-${\beta}$, apolipoprotein, APP(amyloid precursor protein), TGF, MMP-9 and free radical. 3. In Korea experimental studies were chiefly done for the elimataion of C-peptide, amyloid-${\beta}$, apolipoprotein, APP for alzheimer's disease, for the development of drug inhibiting degerative change following CVA and loss of memory and also administrative measure was done by support of government. 4. Drugs of dimentia developed so far were Chi-Dai dan, extracts from aloe, mushroom, green tea, Ganoderma and also folic acid, vitamin C, DHEA and silk amino acid were reported to be effective in dimenta. 5. Future strategic research had better be done on dementia-inducing factors such as acetylcholine, C-peptide, amyloid-${\beta}$, apolipoprotein, APP, TGF, MMP-9 and free radical, development of animal model for dimentia, clinical study, epidemiology, nursing and administrative studies and also consortium for dimentia research should be formed so that repeated investment be avoided.

  • PDF

A Correspondence between Aging-related Reduction of Neprilysin and Elevation of Aβ-42 or γ-Secretase Activity in Transgenic Mice Expressing NSE-controlled APPsw or Human Mutant Presenilin-2

  • Lim Hwa-J.;Kim Yong-K.;Sheen Yhun-Y.
    • Biomolecules & Therapeutics
    • /
    • 제14권2호
    • /
    • pp.106-109
    • /
    • 2006
  • Neprilysin (Nep) is known to be important to degrade $A{\beta}$ derived from amyloid precursor protein (APP) by cleavage with $\beta-and\;\gamma$-secretases. In order to determine whether a correspondence between $A{\beta}-42/{\gamma}-secretase$ activity and Nep levels exists in postnatal aging of transgenic mice expressing either neuron-specific enolase (NSE)-controlled human mutant presenilin-2 (hPS2m) or APPsw alone, the levels of Nep expression and $A{\beta}-42/{\gamma}-secretase$ activity were examined age of 5, 12, and 20 months, respectively. The levels of Nep expression in both types of transgenic brains were decreased relative to those of control mice in a aging-related manner, while the level of $A{\beta}-42/{\gamma}-secretase$ activity was reversibly increased. Thus, changes in $A{\beta}-42$ may all reflect variation in amounts of Nep enzyme.

Structure of CT26 in the C-terminal of Amyloid Precursor Protein Studied by NMR Spectroscopy

  • Kang, Dong-Il;Baek, Dong-Ha;Shin, Song-Yub;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권8호
    • /
    • pp.1225-1228
    • /
    • 2005
  • C-terminal fragments of APP (APP-CTs), that contain A$\beta$ sequence, are found in neurotic plaques, neurofibrillary tangles and the cytosol of lymphoblastoid cells obtained from AD patients. CT26, Thr639-Asp664 (TVIVITLVMLKKKQYTSIHH GVVEVD) includes not only the transmembrane domain but also the cytoplasmic domain of APP. This sequence is produced from cleavage of APP by caspase and $\gamma$-secretase. In this study, the solution structure of CT26 was investigated using NMR spectroscopy and circular dichroism (CD) spectropolarimeter in various membrane-mimicking environments. According to CD spectra and the tertiary structure of CT26 determined in TFE-containing aqueous solution, CT26 has an α-helical structure from $Val^{2}\;to\;Lys^{11}$ in TFE-containing aqueous solution. However, according to CD data, CT26 adopts a $\beta$-sheet structure in the SDS micelles and DPC micelles. This result implies that CT26 may have a conformational transition between $\alpha$-helix and $\beta$-sheet structure. This study may provide an insight into the conformational basis of the pathological activity of the C-terminal fragments of APP in the model membrane.

실험적 외상성 뇌손상모델에서 외상 후 저체온법의 효과 - TUNEL과 β-APP Immunohistochemical Stain - (Effects of Posttraumatic Hypothermia in an Animal Model of Traumatic Brain Injury(TBI) - Immunohistochemical Stain by TUNEL & β-APP -)

  • 안병길;하영수;현동근;박종운;김준미
    • Journal of Korean Neurosurgical Society
    • /
    • 제29권4호
    • /
    • pp.461-470
    • /
    • 2000
  • Objective : Many investigators have demonstrated the protective effects of hypothermia following traumatic brain injury(TBI) in both animals and humans. It has long been recognized that mild to moderate hypothermia improves neurologic outcomes as well as reduces histologic and biochemical sequelae after TBI. In this study, two immunohistochemical staining using terminal deoxynucleotidyl-transferase-mediated biotin dUTP nick end labeling(TUNEL), staining of apoptosis, and ${\beta}$-amyloid precursor protein(${\beta}$-APP), a marker of axonal injury, were done and the authors evaluated the protective effects of hypothermia on axonal and neuronal injury after TBI in rats. Material and Method : The animals were prepared for the delivery of impact-acceleration brain injury as described by Marmarou and colleagues. TBI is achieved by allowing of a weight drop of 450gm, 1 m height to fall onto a metallic disc fixed on the intact skull of the rats. Fourty Sprague-Dawley rats weighing 400 to 450g were subjected to experimental TBI induced by an impact-acceleration device. Twenty rats were subjected to hypothermia after injury, with their rectal temperatures maintained at $32^{\circ}C$ for 1 hour. After this 1-hour period of hypothermia, rewarming to normothermic levels was accomplished over 30-minute period. Following 12 hours, 24 hours, 1 week and 2 weeks later the animals were killed and semiserial sagittal sections of the brain were reacted for visualization of the apoptosis and ${\beta}$-APP. Results : The density of ${\beta}$-APP marked damaged axons within the corticospinal tract at the pontomedullary junction and apoptotic cells at the contused cerebral cortex were calculated for each animal. In comparison with the untreated controls, a significant reduction in ${\beta}$-APP marked damaged axonal density and apoptotic cells were found in all hypothermic animals(p<0.05). Conclusion : This study shows that the posttraumatic hypothermia result in substantial protection in TBI, at least in terms of the injured axons and neurons.

  • PDF

Effect of 42 amino acid long amyloid-β peptides on Arabidopsis plants

  • Lee, HanGyeol;Kim, Ji Woo;Jeong, Sangyun;An, Jungeun;Kim, Young-Cheon;Ryu, Hojin;Lee, Jeong Hwan
    • Journal of Plant Biotechnology
    • /
    • 제47권4호
    • /
    • pp.283-288
    • /
    • 2020
  • Although the evolution of Arabidopsis thaliana and humans diverged approximately 1.6 billion years ago, recent studies have demonstrated that protein function and cellular processes involved in disease response remain remarkably conserved. Particularly, γ-secretase, a multisubunit protein complex that participates in intramembrane proteolysis (RIP) regulation, is also known to mediate the cleavage of more than 80 substrates including the amyloid precursor protein (APP) and the Notch receptor. Although the genes (PS1/2, APH-1, PEN-2, and NCT) coding for the γ-secretase complex components are present in plant genomes, their function remains largely uncharacterized. Given that the deposition of 42 amino acid long amyloid-β peptides (hAβ42) is thought to be one of the main causes of Alzheimer's disease, we aimed to examine the physiological effects of hAβ42 peptides on plants. Interestingly, we found that Arabidopsis protoplast death increased after 24 h of exposure to 3 or 5 µM hAβ42 peptides. Furthermore, transgenic Arabidopsis plants overexpressing the hAβ42 gene exhibited changes in primary root length and silique phyllotaxy. Taken together, our results demonstrate that hAβ42 peptides, a metazoan protein, significantly affect Arabidopsis protoplast viability and plant morphology.

Suppression of β-Secretase (BACE1) Activity and β-Amyloid Protein-Induced Neurotoxicity by Solvent Fractions from Petasites japonicus Leaves

  • Hong, Seung-Young;Park, In-Shik;Jun, Mi-Ra
    • Preventive Nutrition and Food Science
    • /
    • 제16권1호
    • /
    • pp.18-23
    • /
    • 2011
  • Alzheimer's disease (AD) is a neurodegenerative disorder characterized by neuronal loss and extracellular senile plaques containing $\beta$-amyloid peptide (A$\beta$). The deposition of the A$\beta$ peptide following proteolytic processing of amyloid precursor protein (APP) by $\beta$-secretase (BACE1) and $\gamma$-secretase is a critical feature in the progression of AD. Among the plant extracts tested, the ethanol extract of Petasites japonicus leaves showed novel protective effect on B103 neuroblastoma cells against neurotoxicity induced by A$\beta$, as well as a strong suppressive effect on BACE1 activity. Ethanol extracts of P. japonicus leaves were sequentially extracted with methylene chloride, ethyl acetate and butanol and evaluated for potential to inhibit BACE1, as well as to suppress A$\beta$-induced neurotoxicity. Exposure to A$\beta$ significantly reduced cell viability and increased apoptotic cell death. However, pretreatment with ethyl acetate fraction of P. japonicus leaves prior to A$\beta$ (50 ${\mu}M$) significantly increased cell viability (p<0.01). In parallel, cell apoptosis triggered by A$\beta$ was also dramatically inhibited by ethyl acetate fraction of P. japonicus leaves. Moreover, the ethyl acetate fraction suppressed caspase-3 activity to the basal level at 30 ppm. Taken together, these results demonstrated that P. japonicus leaves appear to be a useful source for the inhibition and/or prevention of AD by suppression of BACE1 activity and attenuation of A$\beta$ induced neurocytotoxicity.

공진단(拱辰丹)이 CT105로 유도된 Alzheimer's disease 병태(病態)모델에 미치는 영향 (The Effects of KongJin-Dan(KJD) on the Alzheimer's Disease Model Induced by CT105)

  • 정대규;황선미
    • 동의신경정신과학회지
    • /
    • 제15권2호
    • /
    • pp.103-118
    • /
    • 2004
  • Objective : This experiment was designed to investigate the effect of KongJin-dan(KJD) on the Alzheimer's disease. Method : The effects of KJD on $LI-1{\beta}$, IL-6, $TNF-{\alpha}$, amyloid precursor proteins(APP), acetylcholinesterase(AChE), glial fibrillary acidic protein(GFAP) mRNA of PC-12 and THP-1 cell treated by CT105 and AChE activity, APP production of PC-12 cell lysate treated by CT105 were investigated, respectively. Results : 1. KJD suppressed $LI-1{\beta}$, IL-6, $TNF-{\alpha}$, APP, AChE, GFAP mRNA in THP-1 and PC-12 cell treated by CT105. 2. KJD suppressed AChE activity and production of APP significantly in cell lysate of PC-12 cell treated by CT105. Conclusions : This study shows that KJD might be usefully applied for prevention and treatment of Alzheimer's disease.

  • PDF

BACE2의 대량발현 및 리폴딩 (Overexpression and Refolding of BACE2)

  • 박선주;타이슈아이치;이연지;전유진;김용태
    • 한국수산과학회지
    • /
    • 제47권4호
    • /
    • pp.370-375
    • /
    • 2014
  • BACE2 is a membrane-bound aspartic protease that is highly homologous with BACE1. While BACE1 processes the amyloid precursor protein (APP) at a key step in generating ${\beta}$-amyloid peptide and presumably causes Alzheimer's disease (AD), BACE2 has not been demonstrated to be involved in APP processing directly, and its physiological functions are unknown. To determine its function and to develop inhibitors from marine sources, we constructed an overexpression vector for producing BACE2. The gene encoding human BACE2 protease was amplified using the polymerase chain reaction and cloned into the pET11a expression vector, resulting in pET11a/BACE2. Recombinant BACE2 protease was overexpressed successfully in E. coli as inclusion bodies, refolded using the rapid-dilution method, and purified via two-step fast protein liquid chromatography using Sephacryl S-300 gel filtration and Resource-Q column chromatography. The BACE2 protease produced was an active form. This study provides an efficient method not only for studying the basic properties of BACE2, but also for developing inhibitors from natural marine sources.