DOI QR코드

DOI QR Code

Structure of CT26 in the C-terminal of Amyloid Precursor Protein Studied by NMR Spectroscopy

  • Kang, Dong-Il (Department of Chemistry and Bio/Materials Informatics Center, Konkuk University) ;
  • Baek, Dong-Ha (Department of Chemistry and Bio/Materials Informatics Center, Konkuk University) ;
  • Shin, Song-Yub (Department of Bio-Materials, Graduate School and Research Center for Proteineous Materials, Chosun University) ;
  • Kim, Yang-Mee (Department of Chemistry and Bio/Materials Informatics Center, Konkuk University)
  • Published : 2005.08.20

Abstract

C-terminal fragments of APP (APP-CTs), that contain A$\beta$ sequence, are found in neurotic plaques, neurofibrillary tangles and the cytosol of lymphoblastoid cells obtained from AD patients. CT26, Thr639-Asp664 (TVIVITLVMLKKKQYTSIHH GVVEVD) includes not only the transmembrane domain but also the cytoplasmic domain of APP. This sequence is produced from cleavage of APP by caspase and $\gamma$-secretase. In this study, the solution structure of CT26 was investigated using NMR spectroscopy and circular dichroism (CD) spectropolarimeter in various membrane-mimicking environments. According to CD spectra and the tertiary structure of CT26 determined in TFE-containing aqueous solution, CT26 has an α-helical structure from $Val^{2}\;to\;Lys^{11}$ in TFE-containing aqueous solution. However, according to CD data, CT26 adopts a $\beta$-sheet structure in the SDS micelles and DPC micelles. This result implies that CT26 may have a conformational transition between $\alpha$-helix and $\beta$-sheet structure. This study may provide an insight into the conformational basis of the pathological activity of the C-terminal fragments of APP in the model membrane.

Keywords

References

  1. Suh, Y. H. Life Science & Biotechnology 2000, 14, 16
  2. Selkoe, D. J. J. Neuropathol. Exp. Neurol. 1994, 53, 438 https://doi.org/10.1097/00005072-199409000-00003
  3. Checler, F. J. Neurochem. 1995, 65, 1431
  4. Haass, C.; Koo, E. H.; Mellon, A.; Hung, A. Y.; Selkoe, D. J. Nature 1992, 357, 500 https://doi.org/10.1038/357500a0
  5. Golde, T. E.; Estus, S.; Younkin, L. H.; Selkoe, D. J.; Younkin, S. G. Science 1992, 255, 728 https://doi.org/10.1126/science.1738847
  6. Matsumoto, A. Biochem. Biophys. Res. Commun. 1994, 175, 361 https://doi.org/10.1016/0006-291X(91)91572-T
  7. Kametani, F.; Tanaka, K.; Tokuda, T.; Ikeda, S. FEBS Lett. 1994, 351, 165 https://doi.org/10.1016/0014-5793(94)01330-4
  8. Lee, S.; Kim, Y. Bull. Korean Chem. Soc. 2004, 25, 838 https://doi.org/10.1007/s11814-008-0139-6
  9. Fukuchi, K.; Sopher, B.; Furlong, C. E.; Sundstrom, J. A.; Smith, A. C.; Martin, G. M. Neurosci. Lett. 1993, 154, 145 https://doi.org/10.1016/0304-3940(93)90192-N
  10. Oster-Granite, M. L.; Greenan, J.; Neve, R. L. J. Neurosci. 1996, 16, 6732
  11. Arters, J.; Mcphie, D.; Neve, R. L.; Berger-Sweeny, J. Soc. Neurosci. Abst. 1995, 21, 1483
  12. Bertrand, E.; Brouillet, E.; Caille, I.; Bouillot, C.; Cole, G. M.; Prochiantz, A.; Allinquant, B. Mol Cell Neurosci. 2001, 18(5), 503 https://doi.org/10.1006/mcne.2001.1030
  13. Nishimoto, I.; Okamoto, T.; Matsuura, Y.; Takahashi, S.; Okamoto, T.; Murayama, Y.; Ogata, E. Nature 1993, 362, 75 https://doi.org/10.1038/362075a0
  14. Derome, A.; Williamson, M. J. Magn. Reson. 1990, 88, 177
  15. Bax, A.; Davis, D. G. J. Magn. Reson. 1985, 65, 355
  16. Macura, S.; Ernst, R. R. Mol. Phys. 1980, 41, 95 https://doi.org/10.1080/00268978000102601
  17. Bax, A.; Davis, D. G. J. Magn. Reson. 1985, 63, 207
  18. Marion, D.; Wüthrich, K. Biochem. Biophys. Res. Commun. 1983, 113, 967 https://doi.org/10.1016/0006-291X(83)91093-8
  19. Kim, Y.; Prestegard, J. P. J. Magn. Reson. 1989, 84, 9
  20. Clore, G. M.; Gronenborn, A. M. CRC Crit. Rev. Biochem. Mol. Biol. 1989, 24, 479 https://doi.org/10.3109/10409238909086962
  21. Clore, G. M.; Gronenborn, A. M. Protein Sci. 1994, 3, 372
  22. Brünger, A. T. X-PLOR Manual, Version 3.1; Yale University, New Haven, CT, 1993
  23. Wüthrich, K.; Billeter, M.; Braun, W. J. Mol. Biol. 1983, 169, 949 https://doi.org/10.1016/S0022-2836(83)80144-2
  24. Clore, G. M.; Gronenborn, A. M.; Nilges, M.; Ryan, C. A. Biochemistry 1987, 26, 8012 https://doi.org/10.1021/bi00398a069
  25. Nilges, M.; Clore, G. M.; Gronenborn, A. M. FEBS Lett. 1988, 229, 317 https://doi.org/10.1016/0014-5793(88)81148-7
  26. Kuszewski, J.; Nilges, M.; Brünger, A. T. J. Biomol. NMR 1992, 2, 33 https://doi.org/10.1007/BF02192799
  27. Wishart, D. S.; Sykes, B. D.; Richards, F. M. Biochemistry 1992, 31, 1647 https://doi.org/10.1021/bi00121a010
  28. Symmons, M. F.; Buchanan, S. G.; Clarke, D. T.; Jones, G.; Gay, N. J. FEBS Lett. 1997, 412, 397 https://doi.org/10.1016/S0014-5793(97)00809-0
  29. Lee, S.; Suh, Y. H.; Kim, S.; Kim, Y. J. Biomol. Struct. Dyn. 1999, 17, 381 https://doi.org/10.1080/07391102.1999.10508369
  30. J. Biomol. Struct. Dyn. v.17 Lee, S.;Suh, Y.H.;Kim, S.;Kim, Y. https://doi.org/10.1080/07391102.1999.10508369

Cited by

  1. Control of Morphology and Subsequent Toxicity of AβAmyloid Fibrils through the Dequalinium-induced Seed Modification vol.28, pp.12, 2005, https://doi.org/10.5012/bkcs.2007.28.12.2283
  2. Cell Selectivity of Arenicin-1 and Its Derivative with Two Disulfide Bonds vol.29, pp.6, 2005, https://doi.org/10.5012/bkcs.2008.29.6.1190