• Title/Summary/Keyword: Amyloid β protein

Search Result 67, Processing Time 0.024 seconds

Control of Morphology and Subsequent Toxicity of AβAmyloid Fibrils through the Dequalinium-induced Seed Modification

  • Kim, Jin-A;Myung, Eun-Kyung;Lee, In-Hwan;Paik, Seung-R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2283-2287
    • /
    • 2007
  • Amyloid fibril formation of amyloid β/A4 protein (Aβ) is critical to understand the pathological mechanism of Alzheimer's disease and develop controlling strategy toward the neurodegenerative disease. For this purpose, dequalinium (DQ) has been employed as a specific modifier for Aβ aggregation and its subsequent cytotoxicity. In the presence of DQ, the final thioflavin-T binding fluorescence of Aβ aggregates decreased significantly. It was the altered morphology of Aβ aggregates in a form of the bundles of the fibrils, distinctive from normal single-stranded amyloid fibrils, and the resulting reduced β-sheet content that were responsible for the decreased fluorescence. The morphological transition of Aβ aggregates assessed with atomic force microscope indicated that the bundle structure observed with DQ appeared to be resulted from the initial multimeric seed structure rather than lateral association of preformed single-stranded fibrils. Investigation of the seeding effect of the DQ-induced Aβ aggregates clearly demonstrated that the seed structure has determined the final morphology of Aβ aggregates as well as the aggregative kinetics by shortening the lag phase. In addition, the cytotoxicity was also varied depending on the final morphology of the aggregates. Taken together, DQ has been considered to be a useful chemical probe to control the cytotoxicity of the amyloid fibrils by influencing the seed structures which turned out to be central to develop therapeutic strategy by inducing the amyloid fibrils in different shapes with varied toxicities.

Neuroprotective effects of Paeonia lactiflora and its active compound paeoniflorin against Aβ25-35-induced neurotoxicity in SH-SY5Y cells

  • Nam, Mi Na;Kim, Ji-Hyun;Lee, Ah Young;Cho, Eun Ju
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.2
    • /
    • pp.105-112
    • /
    • 2021
  • Excessive accumulation of the amyloid beta (Aβ) peptide has been implicated in the pathogenesis of Alzheimer's disease (AD). Paeonia lactiflora (PL) has been used in treatments of several conditions such as inflammation, arthritis, and cognitive impairment. The purpose of this study was to investigate the neuroprotective effect and mechanisms of PL and its active compound, paeoniflorin (PF), on Aβ25-35-induced neurotoxicity in SH-SY5Y cells. We evaluated cell viability, lactate dehydrogenase (LDH) release and reactive oxygen species (ROS) production. Furthermore, underlying mechanism of PL and PF on the regulation of amyloidogenic pathway was analyzed by Western blotting. In our results, Aβ25-35-induced neuronal cell loss was observed, whereas treatment with PL (10, 50, and 100 ㎍/mL) and PF (1, 5, and 10 ㎍/mL) significantly elevated the cell viability, and decreased LDH release and ROS production. In addition, exposure of SH-SY5Y cells to Aβ25-35 significantly increased the protein levels of amyloid precursor protein (APP)-C-terminal fragment β, β-site APP-cleaving enzyme, and presenilin-1 and -2. However, treatment with PL and PF inhibited the amyloidogenic pathway via the down-regulation of those protein expressions. Taken together, our results indicate that PL, and its active compound PF, could protect SH-SY5Y cells against Aβ25-35-induced cell neurotoxicity by attenuating LDH release and ROS production, and these effects may be attributed to regulation of amyloidogenic pathway-related protein expression. In conclusion, PL and PF could be a potential to prevent neurodegenerative disorders such as AD.

Easy Detection of Amyloid β-Protein Using Photo-Sensitive Field Effect

  • Kim, Kwan-Soo;Ju, Jong-Il;Song, Ki-Bong
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.339-344
    • /
    • 2012
  • This article describes a novel method for the detection of amyloid-${\beta}$($A{\beta}$) peptide that utilizes a photo-sensitive field-effect transistor (p-FET). According to a recent study, $A{\beta}$ protein has been known to play a central role in the pathogenesis of Alzheimer's disease (AD). Accordingly, we investigated the variation of photo current generated from p-FET with and without intracellular magnetic beads conjugated with $A{\beta}$ peptides, which are placed on the p-FET sensing areas. The decrease of photo current was observed due to the presence of the magnetic beads on the channel region. Moreover, a similar characteristic was shown when the Raw 264 cells take in magnetic beads treated with $A{\beta}$ peptide. This means that it is possible to simply detect a certain protein using magnetic beads and a p-FET device. Therefore, in this paper, we suggest that our method could detect tiny amounts of $A{\beta}$ for early diagnosis of AD using the p-FET devices.

High-Phytate Diets Increase Amyloid β Deposition and Apoptotic Neuronal Cell Death in a Rat Model

  • Hyo-Jung Kim;Yun-Shin Jung;Yun-Jae Jung;Ok-Hee Kim;Byung-Chul Oh
    • Journal of Web Engineering
    • /
    • v.13 no.12
    • /
    • pp.4370-4388
    • /
    • 2021
  • Amyloid-β (Aβ) accumulation in the hippocampus is an essential event in the pathogenesis of Alzheimer's disease. Insoluble Aβ is formed through the sequential proteolytic hydrolysis of the Aβ precursor protein, which is cleaved by proteolytic secretases. However, the pathophysiological mechanisms of Aβ accumulation remain elusive. Here, we report that rats fed high-phytate diets showed Aβ accumulation and increased apoptotic neuronal cell death in the hippocampus through the activation of the amyloidogenic pathway in the hippocampus. Immunoblotting and immunohistochemical analyses confirmed that the overexpression of BACE1 β-secretase, a critical enzyme for Aβ generation, exacerbated the hippocampal Aβ accumulation in rats fed high-phytate diets. Moreover, we identified that parathyroid hormone, a physiological hormone responding to the phytate-mediated dysregulation of calcium and phosphate homeostasis, plays an essential role in the transcriptional activation of the Aβ precursor protein and BACE1 through the vitamin D receptor and retinoid X receptor axis. Thus, our findings suggest that phytate-mediated dysregulation of calcium and phosphate is a substantial risk factor for elevated Aβ accumulation and apoptotic neuronal cell death in rats.

Recent Updates on PET Imaging in Neurodegenerative Diseases (퇴행성 뇌질환에서 PET의 발전과 임상적 적용 및 최신 동향)

  • Yu Kyeong Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.3
    • /
    • pp.453-472
    • /
    • 2022
  • Over the past decades, the immense clinical need for early detection methods and treatments for dementia has become a priority worldwide. The advances in PET biomarkers play increasingly important roles in understanding disease mechanisms by demonstrating the protein pathology underlying dementia in the brain. Amyloid-β and tau deposition in PET images are now key diagnostic biomarkers for the Alzheimer's disease continuum. The inclusion of biomarkers in the diagnostic criteria has achieved a paradigm shift in facilitating early differential diagnosis, predicting disease prognosis, and influencing clinical management. Furthermore, in vivo images showing pathology could become prognostic as well as surrogate biomarkers in therapeutic trials. In this review, we focus on recent developments in radiotracers for amyloid-β and tau PET imaging in Alzheimer's disease and other neurodegenerative diseases. Further, we introduce their potential application as future perspectives.

The Effect of Vitis labruscana B. Leaves Ethanol Extract on the Expression of Amyloid Precursor Protein in Neuroblastoma Cells and on the Acetylcholinesterase Activity (캠벨얼리(Vitis labruscana B.) 잎 에탄올 추출물이 신경세포에서 아밀로이드 전구 단백질의 발현과 아세틸콜린에스테라제 활성에 미치는 영향)

  • Choi, Ha Yeon;Kim, Ju Eun;Ma, Sang Yong;Cho, Hyung Kwon;Kim, Dae Sung;Leem, Jae Yoon
    • Korean Journal of Pharmacognosy
    • /
    • v.53 no.2
    • /
    • pp.102-110
    • /
    • 2022
  • Alzheimer's disease (AD) is the most common form of dementia, and the accumulation of β-amyloid (Aβ) in the brain triggers AD, followed by hyperphosphorylation of tau protein, neurofibrillary tangles, and synapses loss, neuronal cell death, and cognitive decline occur in a chain. In APPswe neuronal cell line, 50 ㎍/ml of Campbell early (Vitis labruscana B.) leaves 50% ethanol extract (VLL) treatment inhibited the secretion of Aβ1-42 by about 63% and the secretion of Aβ1-40 by about 50%. VLL did not target the enzymatic activity of the amyloidogenic pathway and decreased the protein expression of APP. As a result of RT-qPCR (Reverse transcription-quantitative real-time PCR) of the APPswe cell line treated with VLL, it is thought that the protein expression of APP was reduced by inhibiting the transcription process of the APP gene. In addition, VLL inhibited acetylcholinesterase (AChE) enzyme activity in vitro by 27.6% and 54.7%, respectively, at 50 and 100 ㎍/ml concentrations. We found that VLL inhibited the production of Aβ, a dementia-inducing substance, by suppressing the transcription of the APP gene, and that VLL inhibited AChE activity. We suggest that VLL has the potential as a natural drug material that modulates the alleviation of dementia symptoms.

Protective effects of N,4,5-trimethylthiazol-2-amine hydrochloride on hypoxia-induced β-amyloid production in SH-SY5Y cells

  • Han, A Reum;Yang, Ji Woong;Na, Jung-Min;Choi, Soo Young;Cho, Sung-Woo
    • BMB Reports
    • /
    • v.52 no.7
    • /
    • pp.439-444
    • /
    • 2019
  • Although hypoxic/ischemic injury is thought to contribute to the incidence of Alzheimer's disease (AD), the molecular mechanism that determines the relationship between hypoxia-induced ${\beta}$-amyloid ($A{\beta}$) generation and development of AD is not yet known. We have now investigated the protective effects of N,4,5-trimethylthiazol-2-amine hydrochloride (KHG26702), a novel thiazole derivative, on oxygen-glucose deprivation (OGD)-reoxygenation (OGD-R)-induced $A{\beta}$ production in SH-SY5Y human neuroblastoma cells. Pretreatment of these cells with KHG26702 significantly attenuated OGD-R-induced production of reactive oxygen species and elevation of levels of malondialdehyde, prostaglandin $E_2$, interleukin 6 and glutathione, as well as superoxide dismutase activity. KHG26702 also reduced OGD-R-induced expression of the apoptotic protein caspase-3, the apoptosis regulator Bcl-2, and the autophagy protein becn-1. Finally, KHG26702 reduced OGD-R-induced $A{\beta}$ production and cleavage of amyloid precursor protein, by inhibiting secretase activity and suppressing the autophagic pathway. Although supporting data from in vivo studies are required, our results indicate that KHG26702 may prevent neuronal cell damage from OGD-R-induced toxicity.

Conceptus-derived cytokines interleukin-1β and interferon-γ induce the expression of acute phase protein serum amyloid A3 in endometrial epithelia at the time of conceptus implantation in pigs

  • Soohyung Lee;Inkyun Yoo;Yugyeong Cheon;Hakhyun Ka
    • Animal Bioscience
    • /
    • v.36 no.3
    • /
    • pp.441-450
    • /
    • 2023
  • Objective: Serum amyloid A3 (SAA3), an acute phase response protein, plays important roles in opsonization, antimicrobial activity, chemotactic activity, and immunomodulation, but its expression, regulation, and function at the maternal-conceptus interface in pigs are not fully understood. Therefore, we determined the expression of SAA3 in the endometrium throughout the estrous cycle and at the maternal-conceptus interface during pregnancy. Methods: Endometrial tissues from pigs at various stages of the estrous cycle and pregnancy and with conceptuses derived from somatic cell nuclear transfer (SCNT), conceptus tissues during early pregnancy, and chorioallantoic tissues during mid- to late pregnancy were obtained and the expression of SAA3 was analyzed. The effects of the steroid hormones, interleukin-1β (IL1B), and interferon-γ (IFNG) on the expression of SAA3 were determined in endometrial explant cultures. Results: SAA3 was expressed in the endometrium during the estrous cycle and pregnancy, with the highest level on day 12 of pregnancy. The expression of SAA3 in the endometrium was significantly higher on day 12 of pregnancy than during the estrous cycle. Early-stage conceptuses and chorioallantoic tissues during mid to late pregnancy also expressed SAA3. The expression of SAA3 was primarily localized to luminal epithelial cells in the endometrium. In endometrial explant cultures, the expression of SAA3 was induced by increasing doses of IL1B and IFNG. Furthermore, the expression of SAA3 decreased significantly in the endometria of pigs carrying conceptuses derived from SCNT on day 12 of pregnancy. Conclusion: These results suggest that the expression of SAA3 in the endometrium during the implantation period increases in response to conceptus-derived IL1B and IFNG. The failure of those appropriate interactions between the implanting conceptus and the endometrium leads to dysregulation of endometrial SAA3 expression, which could result in pregnancy failure. In addition, SAA3 could be a specific endometrial epithelial marker for conceptus implantation in pigs.

Protective Effects of Heat-Killed Ruminococcus albus against β-Amyloid-Induced Apoptosis on SH-SY5Y Cells

  • Seungmoon Choo;Mirae An;Young-Hee Lim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.1
    • /
    • pp.85-93
    • /
    • 2024
  • A high level of β-amyloid (Aβ) in the brains of patients with Alzheimer's disease (AD) generates reactive oxygen species that induce neuronal death and DNA damage. The interaction between the gut microbiota and brain health has attracted attention in recent years. Heat-killed Ruminococcus albus (hkRA) reportedly protects neurons against damage induced by oxidative stress. However, whether hkRA can inhibit Aβ-induced apoptosis and thus alleviate AD remains unclear. Hence, we aimed to evaluate the protective effects of hkRA against Aβ-induced apoptosis on the human neuroblastoma SH-SY5Y cell. HkRA treatment (108 cells/ml) significantly decreased the Aβ-induced cytotoxicity and DNA damage in the SH-SY5Y cells. It also showed a significant increase of the bax/bcl-2 ratio in the Aβ-treated SH-SY5Y cells. Moreover, hkRA treatment stimulated the expression of antioxidation-related genes HO-1, Nrf2, and PKC-δ and increased the expression of brain-derived neurotrophic factor (BDNF). Meanwhile, it significantly decreased the activity of caspase-3 and protein expression of cleaved caspase-3 in the Aβ-treated SH-SY5Y cells. Additionally, the protein levels of mitochondrial and cytosolic cytochrome c increased and decreased, respectively, in the cells. These results suggest that hkRA protects human neuroblastoma cells from Aβ-induced apoptosis and oxidative stress. Thus, hkRA may be developed into a health-promoting paraprobiotic (the inactivated microbial cells of probiotics) for patients with AD.

β-Secretase (BACE1) Purification by Refolding Method and Complex with Hispidin

  • Lim, Ji-Hong;Lee, Bo Ram;Park, Hee Won;Hong, Bum Soo;Lim, Beong Ou;Kim, Young Jun
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.6
    • /
    • pp.553-559
    • /
    • 2014
  • Alzheimer's disease (AD) is a devastating neurodegenerative disease that represents the most common form of dementia among the elderly population. The deposition of aggregated ${\beta}$-amyloid ($A{\beta}$) senile plaques in the human brain is a classic observation in the neuropathology of AD, yet an understanding of the mechanism of their formation remains elusive. $A{\beta}$ is formed through endoproteolysis of the amyloid precursor protein (APP) by ${\beta}$-secretase (BACE1, ${\beta}$-site APP-cleaving enzyme) and ${\gamma}$-secretase. In this study, BACE1 protein was successfully over-expressed, purified, and refolded and utilized in a binding study with hispidin. We developed a simpler refolding method using a urea gradient and size-exclusion gel filtration to purify an active BACE1 protein variant, in larger quantities than that reported previously, and measured the binding affinity of hispidin to the BACE1 protein variant through isothermal titration calorimetry.