DOI QR코드

DOI QR Code

Protective effects of N,4,5-trimethylthiazol-2-amine hydrochloride on hypoxia-induced β-amyloid production in SH-SY5Y cells

  • Han, A Reum (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine) ;
  • Yang, Ji Woong (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine) ;
  • Na, Jung-Min (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine) ;
  • Choi, Soo Young (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Cho, Sung-Woo (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine)
  • Received : 2018.10.01
  • Accepted : 2018.10.24
  • Published : 2019.07.31

Abstract

Although hypoxic/ischemic injury is thought to contribute to the incidence of Alzheimer's disease (AD), the molecular mechanism that determines the relationship between hypoxia-induced ${\beta}$-amyloid ($A{\beta}$) generation and development of AD is not yet known. We have now investigated the protective effects of N,4,5-trimethylthiazol-2-amine hydrochloride (KHG26702), a novel thiazole derivative, on oxygen-glucose deprivation (OGD)-reoxygenation (OGD-R)-induced $A{\beta}$ production in SH-SY5Y human neuroblastoma cells. Pretreatment of these cells with KHG26702 significantly attenuated OGD-R-induced production of reactive oxygen species and elevation of levels of malondialdehyde, prostaglandin $E_2$, interleukin 6 and glutathione, as well as superoxide dismutase activity. KHG26702 also reduced OGD-R-induced expression of the apoptotic protein caspase-3, the apoptosis regulator Bcl-2, and the autophagy protein becn-1. Finally, KHG26702 reduced OGD-R-induced $A{\beta}$ production and cleavage of amyloid precursor protein, by inhibiting secretase activity and suppressing the autophagic pathway. Although supporting data from in vivo studies are required, our results indicate that KHG26702 may prevent neuronal cell damage from OGD-R-induced toxicity.

Keywords

References

  1. Taveira M, Sousa C, Valentao P et al (2014) Neuroprotective effect of steroid alalkaloids on glutamateinduced toxicity by preserving mitochondrial membrane potential and reducing oxidative stress. J Steroid Biochem Mol Biol 140, 106-115 https://doi.org/10.1016/j.jsbmb.2013.12.013
  2. Nalivaevaa NN, Fisk L, Kochkina EG et al (2004) Effect of hypoxia/ischemia and hypoxic preconditioning/reperfusion on expression of some amyloid-degrading enzymes. Ann New York Aca Sci 1035, 21-33 https://doi.org/10.1196/annals.1332.002
  3. Pluta R, Furmaga-Jablonska W, Maciejewski R et al (2013) Brain ischemia activates ${\beta}$- and $\gamma$-secretase cleavage of amyloid precursor protein: significance in sporadic Alzheimer's disease. Mol Neurobiol 47, 425-434 https://doi.org/10.1007/s12035-012-8360-z
  4. Salminen A, Kauppinen A and Kaarniranta K (2017) Hypoxia/ischemia activate processing of Amyloid precursor protein: impact of vascular dysfunction in the pathogenesis of Alzheimer's disease. J Neurochem 140, 536-549 https://doi.org/10.1111/jnc.13932
  5. Shiota S, Takekawa H, Matsumoto SE et al (2013) Chronic intermittent hypoxia/reoxygenation facilitate amyloid-${\beta}$ generation in mice. J Alzheimers Dis 37, 325-333 https://doi.org/10.3233/JAD-130419
  6. Li L, Zhang X, Yang D et al (2009) Hypoxia increases $A{\beta}$ generation by altering ${\beta}$- and $\gamma$-cleavage of APP. Neurobiol Aging 30, 1091-1098 https://doi.org/10.1016/j.neurobiolaging.2007.10.011
  7. Li Q, Wang HM, Wang ZQ et al (2010) Salidroside attenuates hypoxia-induced abnormal processing of amyloid precursor protein by decreasing BACE1 expression in SH-SY5Y cells. Neurosci Lett 481, 154-158 https://doi.org/10.1016/j.neulet.2010.06.076
  8. Margaill I, Plotkine M and Lerouet D (2005) Antioxidant strategies in the treatment of stroke. Free Radic Biol Med 39, 429-443 https://doi.org/10.1016/j.freeradbiomed.2005.05.003
  9. Gould E (2007) How widespread is adult neurogenesis in mammals? Nat Rev Neurosci 8, 481-488 https://doi.org/10.1038/nrn2147
  10. Carboni S, Hiver A, Szyndralewiez C et al (2004) AS601245 (1,3-benzothiazol-2-yl (2-[[2-(3-pyridinyl) ethyl] amino]-4 pyrimidinyl) acetonitrile): a c-Jun NH2-terminal protein kinase inhibitor with neuroprotective properties. J Pharmacol Exp Ther 310, 25-32 https://doi.org/10.1124/jpet.103.064246
  11. Choi MM, Kim EA, Hahn HG et al (2007) Protective effect of benzothiazole derivative KHG21834 on amyloid beta-induced neurotoxicity in PC12 cells and cortical and mesencephalic neurons. Toxicology 239, 156-166 https://doi.org/10.1016/j.tox.2007.07.010
  12. Miglio G, Varsaldi F, Francioli E et al (2004) Cabergoline protects SH-SY5Y neuronal cells in an in vitro model of ischemia. Eur J Pharmacol 489, 157-165 https://doi.org/10.1016/j.ejphar.2004.03.006
  13. Fallarini S, Miglio G, Paoletti T et al (2009) Clovamide and rosmarinic acid induce neuroprotective effects in in vitro models of neuronal death. Br J Pharmacol 157, 1072-1084 https://doi.org/10.1111/j.1476-5381.2009.00213.x
  14. Lewen A, Matz P and Chan PH (2000) Free radical pathways in CNS injury. J Neurotrauma 17, 871-890 https://doi.org/10.1089/neu.2000.17.871
  15. Urabe T, Yamasaki Y, Hattori N et al (2000) Accumulation of 4-hydroxynonenal-modified proteins in hippocampal CA1 pyramidal neurons precedes delayed neuronal damage in the gerbil brain. Neuroscience 100, 241-250 https://doi.org/10.1016/S0306-4522(00)00264-5
  16. Kunwar A, Sandur SK, Krishna M et al (2009) Curcumin mediates time and concentration dependent regulation of redox homeostasis leading to cytotoxicity in macrophage cells. Eur J Pharmacol 611, 8-16 https://doi.org/10.1016/j.ejphar.2009.03.060
  17. Katoh S, Mitsui Y, Kitani K et al (1999) Hyperoxia induces the neuronal differentiated phenotype of PC12 cells via a sustained activity of mitogen-activated protein kinase induced by Bcl-2. Biochem J 338, 465-470 https://doi.org/10.1042/bj3380465
  18. Conrad M and Sato H (2012) The oxidative stressinducible cystine/glutamate antiporter, system x (c) (-): cystine supplier and beyond. Amino Acids 42, 231-246 https://doi.org/10.1007/s00726-011-0867-5
  19. Le DA, Wu Y, Huang Z et al (2002) Caspase activation and neuroprotection in caspase-3-deficient mice after in vivo cerebral ischemia and in vitro oxygen glucose deprivation. Proc Natl Acad Sci U S A 99, 15188-15193 https://doi.org/10.1073/pnas.232473399
  20. Niwa M, Hara A, Iwai T, et al (2001) Caspase activation as an apoptotic evidence in the gerbil hippocampal CA1 pyramidal cells following transient forebrain ischemia. Neurosci Lett 300, 103-106 https://doi.org/10.1016/S0304-3940(01)01559-2
  21. Wang Q, Sun AY, Simonyi A et al (2005) Neuroprotective mechanisms of curcumin against cerebral ischemiainduced neuronal apoptosis and behavioral deficits. J Neurosci Res 82, 138-148 https://doi.org/10.1002/jnr.20610
  22. Zhao H, Yenari MA, Cheng D et al (2003) Bcl-2 overexpression protects against neuron loss within the ischemic margin following experimental stroke and inhibits cytochrome c translocation and caspase-3 activity. J Neurochem 85, 1026-1036 https://doi.org/10.1046/j.1471-4159.2003.01756.x
  23. Karch J and Molkentin JD (2015) Regulated necrotic cell death: the passive aggressive side of Bax and Bak. Circ Res 116, 1800-1809 https://doi.org/10.1161/CIRCRESAHA.116.305421
  24. Braak H, Braak E and Bohl J (1993) Staging of Alzheimerrelated cortical destruction. Eur Neurol 33, 403-408 https://doi.org/10.1159/000116984
  25. Suzuki WA and Amaral DG (2004) Functional neuroanatomy of the medial temporal lobe memory system. Cortex 40, 220-222 https://doi.org/10.1016/S0010-9452(08)70958-4
  26. Banati RB, Gehrmann J, Wiessner C et al (1995) Glial expression of the beta-amyloid precursor protein (APP) in global ischemia. J Cereb Blood Flow Metab 15, 647-654 https://doi.org/10.1038/jcbfm.1995.80
  27. Webster NJ, Green KN, Peers C et al (2002) Altered processing of amyloid precursor protein in the human neuroblastoma SH-SY5Y by chronic hypoxia. J Neurochem 83, 1262-1271 https://doi.org/10.1046/j.1471-4159.2002.01236.x
  28. Mattson MP (2004) Pathways towards and away from Alzheimer's disease. Nature 430, 631-639 https://doi.org/10.1038/nature02621
  29. Muller UC, Deller T and Korte M (2017) Not just amyloid: physiological functions of the amyloid precursor protein family. Nat Rev Neurosci 18, 281-298 https://doi.org/10.1038/nrn.2017.29
  30. Yu WH, Cuervo AM, Kumar A et al (2005) Macroautophagy- a novel Beta-amyloid peptide generating pathway activated in Alzheimer's disease. J Cell Biol 171, 87-98 https://doi.org/10.1083/jcb.200505082