• Title/Summary/Keyword: Amplifier Spacing

Search Result 30, Processing Time 0.021 seconds

Design of Next Generation Amplifiers Using Nanowire FETs

  • Hamedi-Hagh, Sotoudeh;Oh, Soo-Seok;Bindal, Ahmet;Park, Dae-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.566-570
    • /
    • 2008
  • Vertical nanowire SGFETs(Surrounding Gate Field Effect Transistors) provide full gate control over the channel to eliminate short channel effects. This paper presents design and characterization of a differential pair amplifier using NMOS and PMOS SGFETs with a 10nm channel length and a 2nm channel radius. The amplifier dissipates $5{\mu}W$ power and provides 5THz bandwidth with a voltage gain of 16, a linear output voltage swing of 0.5V, and a distortion better than 3% from a 1.8V power supply and a 20aF capacitive load. The 2nd and 3rd order harmonic distortions of the amplifier are -40dBm and -52dBm, respectively, and the 3rd order intermodulation is -24dBm for a two-tone input signal with 10mV amplitude and 10GHz frequency spacing. All these parameters indicate that vertical nanowire surrounding gate transistors are promising candidates for the next generation high speed analog and VLSI technologies.

Polarization-Controlled Waveband Switching in a Multiwavelength Fiber Bragg Grating Laser (다파장 광섬유 격자 레이저의 편광 제어 파장밴드 스위칭)

  • Lee, Yong-Wook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.12
    • /
    • pp.2214-2216
    • /
    • 2007
  • Based on a semiconductor optical amplifier and sampled fiber Bragg gratings, polarization-controlled waveband switching in multiwavelength fiber laser is successfully demonstrated at room temperature by using high polarization selectivity of a polarization beam splitter. A multiwavelength-switching operation between eight and six laser lines with signal to noise ratio over 35 dB and wavelength spacing of ${\sim}0.8nm$ has been successfully demonstrated. The switching displacement of the proposed laser was ${\sim}7.1nm$. The intensity unevenness between different laser lines was measured to be less than 6.5 dB. The switching displacement between wavebands (groups of contiguous wavelengths), wavelength channels, and their spacings can be flexibly designed by the selected comb filters.

Application of Feed-forward Linearization Method to A Transmitter System (Feed-forward 선형화 방식을 적용한 송신 시스템 설계)

  • 김경태;김상규
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.303-308
    • /
    • 2004
  • In this Paper a transmitter system for IMr-2000 using feed-forward linearization method was Proposed to linearize power amplifier. The feed-forward structure needs a reference signal to compare and neutralize distortion : this is achieved through the second modulator which is operated at very low input level to obtain a signal with a negligible distortion. Therefore, this structure can reduce distortion of modulator as well as Power amplifier. This is the advantage over the existing system structure. The Proposed transmitter system is designed and simulated by Agilent ADS ver.2002. A two tone test for the system is done at 1.98GHz center frequency with frequency spacing of 2MHz. The reduction of Inter-Modulation Distortion(IMD) is around 49.95dB. This proposed system offers an excellent combination of linearity and simplicity.

Effect of Modulation Frequency of Power Amplifier on IMD Cancellation Performance of Predistortion Linearizer (RF 전치 왜곡된 전력 증폭기의 변조 주파수가 혼변조 개선량에 미치는 영향)

  • 최진철;조경준;김상희;김종현;이병제;김남영;이종철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.450-457
    • /
    • 2003
  • In this paper, we studied the effect of asymmetrical 3rd order IMD of power amplifier due to changes in modulation frequency on IMD cancellation performance. The phase extraction method for determining asymmetric rate for phase distortion of IMD is proposed and the phase difference between lower and upper 3rd order IMD is measured by this method. The phase compensation circuit to decrease the phase difference is also designed and fabricated. From the measurement results using the phase compensation circuit applied to 5 W RF power amplifier fur PCS applications, the 3rd order IMD cancellation performance can be achieved up to 2-tone spacing 1.5 MHz (phase difference within 10$^{\circ}$).

A Novel Digital Feedback Predistortion Technique with Memory Lookup Table

  • Moon, Jung-Hwan;Kim, Jang-Heon;Kim, Bum-Man
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.3
    • /
    • pp.152-158
    • /
    • 2009
  • We have developed a novel digital feedback predistortion(DFBPD) linearization based on RF feedback PD for the wide bandwidth modulated signals. The wideband PD operation is carried out by combining the DFBPD and memory lookup table(LUT). To experimentally demonstrate the linearization performance of the proposed PD technique for wideband signal, a class-AB amplifier using an LDMOSFET MRF6S23140 with 140-W peak envelope power is employed at 2.345 GHz. For a forward-link 2FA wideband code-division multiple-access signal with 10 MHz carrier spacing, the proposed DFBPD with memory LUT delivers the adjacent channel leakage ratio at an 10 MHz offset of -56.8 dBc, while those of the amplifier with and without DFBPD are -43.2 dBc and -41.9 dBc, respectively, at an average output power of 40 dBm. The experimental result shows that the new DFBPD with memory LUT provides a good linearization performance for the signal with wide bandwidth.

GC-EDFA for a Burst Packet Mode Optical Switching System

  • Yang, Choong-Reol;Kim, Whan-Woo
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.44-48
    • /
    • 2007
  • A two-stage gain-clamped erbium doped fiber amplifier (GC-EDFA) using a pump laser diode and a 16 channel wavelength division multiplexing (WDM) with 0.8 nm spacing in C band of $1,545{\sim}1,560nm$ wavelength is experimentally demonstrated for a burst packet mode optical switching system.

Tunable Photonic Microwave Delay Line Filter Based on Fabry-Perot Laser Diode

  • Heo, Sang-Hu;Kim, Junsu;Lee, Chung Ghiu;Park, Chang-Soo
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.27-33
    • /
    • 2018
  • We report the physical implementation of a tunable photonic microwave delay line filter based on injection locking of a single Fabry-Perot laser diode (FP-LD) to a reflective semiconductor optical amplifier (RSOA). The laser generates equally spaced multiple wavelengths and a single tapped-delay line can be obtained with a dispersive single mode fiber. The filter frequency response depends on the wavelength spacing and can be tuned by the temperature of the FP-LD varying lasing wavelength. For amplitude control of the wavelengths, we use gain saturation of the RSOA and the offset between the peak wavelengths of the FP-LD and the RSOA to decrease the amplitude difference in the wavelengths. From the temperature change of total $15^{\circ}C$, the filter, consisting of four flat wavelengths and two wavelengths with slightly lower amplitudes on both sides, has shown tunability of about 390 MHz.

A compensation method for a temperature-dependent gain tilt in L-band EDFA using a voltage-controlled attenuator (L-band EDFA 에서의 온도에 따른 이득 변화와 가변 감쇄기를 이용한 온도 보상)

  • 이원경;정희상;주무정
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.1
    • /
    • pp.12-16
    • /
    • 2003
  • This paper presents a compensation method for a temperature-dependent gain tilt in L-band erbium-doped fiber amplifier using a voltage-controlled attenuator. The gain tilts in the L-band of 1570-1605 nm due to a temperature change have negative slopes, whereas they have positive slopes for the increasing optical input powers in a saturation region. The proposed method utilizes these opposite gain variations to compensate for the gain tilt over a wide range of temperature. While applying forty channels with a channel spacing of 100 GHz in the L-band and changing the ambient temperature from 0 to $50^{\circ}C$, the compensation method maintained the gain deviation within 1 dB.

Ultra-broadband Optical Amplifier for WDM Optical Transmission Networks (파장분할다중 방식 광전송망을 위한 초광대역 광증폭기)

  • Lee, Young-Sun;Jung, Jae-Jin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.3 no.4
    • /
    • pp.289-294
    • /
    • 2008
  • Affordable traffic capacity of each node in networks is expected to reach in Tb/s range in proportion to the rapid growth of Internet users. To transmit more than Tb/s per fiber pair, WDM should be used as well as existing TDM. To increase the capacity of transmission in WDM networks, there are two ways, increasing channel speed or channel quantity. To increase the channel quantity, there are two ways, narrow spacing or expanding transmission bandwidth. To expand bandwidth, ultra-broadband optical amplifier technology is necessary. In this paper, we introduce EDFA in effect at C/L band, FRA, and some optical amplifiers in effect at S band, and analyze the development trend of various amplification technologies.

  • PDF

Variable and Flexible Optical Frequency Comb Source using Dual Mach Zehnder Modulator and Phase Modulator

  • Naveed, Abbas;Choi, Bong-Soo;Tran, ThanhTuan;Seo, Dongsun
    • Journal of IKEEE
    • /
    • v.20 no.4
    • /
    • pp.385-391
    • /
    • 2016
  • We demonstrated experimentally a variable optical frequency comb source using a cascaded dual parallel Mach Zehnder modulator (DPMZM) and a phase modulator (PM). With this simple configuration and applying low drive voltages, we generated variable comb source composed of spectral lines 3, 5, 7, 9 and 11 with 10-GHz frequency spacing, also generated 2 and 3 spectral lines with 20 GHz frequency spacing. The generated comb source maintains high spectral coherence across the entire bandwidth with good spectral flatness (within 1-dB for 2, 3, 5, 7 comb lines, within 2-dB for 9-comb lines and within 3-dB for 11 comb lines). The flat and variable comb source is mainly achieved by manipulating 6 operating parameters of DPMZM, setting RF amplifier gain, connected at phase modulator and phase shifters. Hence the method is simple and offers great flexibility in achieving flat and variable comb spectrum, which is experimentally demonstrated. This brings advantages of power efficiency due to low driving voltages, simplicity and cost effectiveness to the system.