• Title/Summary/Keyword: Amplicon Sequencing

Search Result 61, Processing Time 0.021 seconds

Complete genome and phylogenetic analysis of bovine papillomavirus type 15 in Southern Xinjiang dairy cow

  • Hu, Jianjun;Zhang, Wanqi;Chauhan, Surinder Singh;Shi, Changqing;Song, Yumeng;Zhao, Yubing;Wang, Zhehong;Cheng, Long;Zhang, Yingyu
    • Journal of Veterinary Science
    • /
    • v.21 no.6
    • /
    • pp.73.1-73.10
    • /
    • 2020
  • Background: Bovine papilloma is a neoplastic disease caused by bovine papillomaviruses (BPVs), which were recently divided into 5 genera and at least 24 genotypes. Objectives: The complete genome sequence of BPV type 15 (BPV Aks-02), a novel putative BPV type from skin samples from infected cows in Southern Xinjiang China, was determined by collecting warty lesions, followed by DNA extraction and amplicon sequencing. Methods: DNA was analyzed initially by polymerase chain reaction (PCR) using the degenerate primers FAP59 and FAP64. The complete genome sequences of the BPV Aks-02 were amplified by PCR using the amplification primers and sequencing primers. Sequence analysis and phylogenetic analysis were performed using bio-informatic software. Results: The nucleotide sequence of the L1 open reading frame (ORF) of BPV Aks-02 was 75% identity to the L1 ORF of BPV-9 reference strain from GenBank. The complete genome consisted of 7,189 base pairs (G + C content of 42.50%) that encoded 5 early (E8, E7, E1, E2, and E4) and 2 late (L1 and L2) genes. The E7 protein contained a consensus CX2CX29CX2C zinc-binding domain and a LxCxE motif. Among the different members of this group, the percentages of the complete genome and ORFs (including 5 early and 2 late ORFs) sequence identity of BPV Aks-02 were closer to the genus Xipapillomavirus 1 of the Xipapillomavirus genus. Phylogenetic analysis and sequence similarities based on the L1 ORF of BPV Aks-02 revealed the same cluster. Conclusions: The results suggest that BPV type (BPV Aks-02) clustered with members of the Xipapillomavirus genus as BPV 15 and were closely related to Xipapillomavirus 1.

Gut microbial assessment among Hylobatidae at the National Wildlife Rescue Centre, Peninsular Malaysia

  • Roberta Chaya Tawie Tingga;Millawati Gani;Abd Rahman Mohd-Ridwan;Nor Rahman Aifat;Ikki Matsuda;Badrul Munir Md-Zain
    • Journal of Veterinary Science
    • /
    • v.25 no.5
    • /
    • pp.65.1-65.11
    • /
    • 2024
  • Importance: Recent developments in genetic analytical techniques have enabled the comprehensive analysis of gastrointestinal symbiotic bacteria as a screening tool for animal health conditions, especially the endangered gibbons at the National Wildlife Rescue Centre (NWRC). Objective: High-throughput sequencing based on 16S ribosomal RNA genes was used to determine the baseline gut bacterial composition and identify potential pathogenic bacteria among three endangered gibbons housed in the NWRC. Methods: Feces were collected from 14 individuals (Hylobates lar, n = 9; Hylobates agilis, n = 4; and Symphalangus syndactylus, n = 1) from March to November 2022. Amplicon sequencing were conducted by targeting V3-V4 region. Results: The fecal microbial community of the study gibbons was dominated by Bacteroidetes and Firmicutes (phylum level), Prevotellaceae and Lachnospiraceae/Muribaculaceae (family level), and Prevotella (and its subgroups) (genera level). This trend suggests that the microbial community composition of the study gibbons differed insignificantly from previously reported conspecific or closely related gibbon species. Conclusions and Relevance: This study showed no serious health problems that require immediate attention. However, relatively low alpha diversity and few potential bacteria related to gastrointestinal diseases and streptococcal infections were detected. Information on microbial composition is essential as a guideline to sustain a healthy gut condition of captive gibbons in NWRC, especially before releasing this primate back into the wild or semi-wild environment. Further enhanced husbandry environments in the NWRC are expected through continuous health monitoring and increase diversity of the gut microbiota through diet diversification.

Comparison of Fecal Microbiota between Birth and Weaning of Halla Horses Using 16S rRNA Gene Amplicon Sequencing (16S 앰플리콘 시퀀싱 기반 한라마 출생시와 이유기의 분변 미생물 비교 분석)

  • Lee, Jongan;Kang, Young-Jun;Choi, Jae-Young;Shin, Sang-Min;Shin, Moon-Cheol
    • Journal of Life Science
    • /
    • v.32 no.12
    • /
    • pp.1005-1012
    • /
    • 2022
  • This study was conducted to investigate the taxonomic composition and diversity of fecal microbiota between birth and weaning stages of Halla horses using 16S rRNA gene amplicon sequencing analysis. Proteobacteria (35.7%) and Firmicutes (45.6%) were identified as the most common phylum in birth and weaning, respectively. Escherichia (19.7%) and Clostridium (14.0%) were observed as the most dominant genus in birth, and Fibrobacter (6.6%) was the highest in weaning. The results of α-diversity showed that the richness and evenness in microbial communities were statistically significant (p<0.001) in birth and weaning. The results of β-diversity indicated that the birth and weaning stages were clearly divided into two groups at the genus and species levels. Permutational multivariate analysis of variance (PERMANOVA) showed that the microbiota composition differences between birth and weaning were statistically significant (q<0.001). A linear discriminant analysis effect (LEfSe) was performed to select taxonomic makers between the birth and weaning stages. On the genus level, Escherichia, Bacteroides, Clostridium, and Methylobacterium were relatively abundant at birth, whereas Fibrobacter was more abundant at weaning. We expect that this research can be utilized as basic data in the identification of microbial communities involved in disease prevention and nutrient absorption in Halla horses.

Investigation of Variation in Bacterial Community Structure in Endangered Korean Fir Tree by Habitats (멸종위기종 구상나무 서식지별 세균 군집 구조 변이 조사)

  • Young Min Ko;Geun-Hye Gang;Dae Ho Jung;Youn-Sig Kwak
    • Research in Plant Disease
    • /
    • v.30 no.2
    • /
    • pp.165-175
    • /
    • 2024
  • The Korean fir tree (Abies koreana), an endemic species of South Korea, is experiencing a severe decline in population due to climate change. Studies on the conservation of Korean fir have been extensive, yet research regarding its correlation with rhizosphere bacterial communities remains scarce, warranting further investigation. In this study, metagenome amplicon sequencing targeting the 16S rRNA V4 region was conducted to examine the presence of specific bacterial communities in Korean fir and to investigate potential differences based on habitat types (rhizosphere of native or cultivated trees, soil of dead trees, and bulk soil) and seasonal variations (April, June, September, November). Here we show that although we could not identify specific taxa highly specifically with Korean fir, the rhizosphere bacterial community in native trees exhibited less variability in response to seasonal changes compared to that in bulk soils. Suggesting the establishment of relatively stable bacterial populations around the Korean fir natural habitat. Further research on other types of rhizosphere and/or microbes is necessary to investigate the distinct relationship of Korean fir with microbial communities.

Impact of rumen cannulation surgery on rumen microbiota composition in Hanwoo steers

  • Minseok Kim;Tansol Park;Cheolju Park;Youl-Chang Baek;Ara Cho;Han Gyu Lee;Eunju Kim;Eun-Yeong Bok;Young-Hun Jung;Tai-Young Hur;Yoon Jung Do
    • Journal of Animal Science and Technology
    • /
    • v.66 no.2
    • /
    • pp.353-365
    • /
    • 2024
  • Rumen cannulation is a surgical technique used to collect rumen contents from ruminants. However, rumen cannulation surgery may potentially impact the composition of the rumen microbiota. This study aimed to examine the longitudinal alterations in the rumen microbiota composition of Hanwoo steers after cannulation surgery. In this study, eight Hanwoo steers were used; four steers underwent rumen cannulation surgery (cannulation group), while the remaining four were left intact (control group). Rumen samples were collected from all eight steers using the stomach tubing method on the day before surgery (day 0) and on postoperative days 1, 4, 7, 10, 14, 17, 21, 24, and 28, resulting in 80 samples (10 timepoints × 8 animals). The microbiota of all 80 samples were analyzed using 16S rRNA gene amplicon sequencing with Quantitative Insights into Microbial Ecology version 2 (QIIME2). There were no significant differences (p > 0.05) in all major phyla and most major genera representing at least 0.5% of total sequences across all 80 samples between the control and cannulation groups on the preoperative and postoperative days. However, while the alpha diversity indices did not differ (p > 0.05) between the two groups on the preoperative day, they significantly differed (p < 0.05) between the two groups on the postoperative days. Further, the overall microbial distribution based on both unweighted and weighted principal coordinate analysis plots significantly differed (p < 0.05) between the two groups on both the preoperative and postoperative days. Orthogonal polynomial contrasts indicated that major genera and microbial diversity in the cannulation group decreased following surgery but returned to their initial states by postoperative day 28. In conclusion, this study demonstrates that rumen cannulation surgery affects some major taxa and microbial diversity, suggesting that the rumen cannulation method can alter the composition of rumen microbiota in Hanwoo steers.

Genetic Variation and Species Identification of Thai Boesenbergia (Zingiberaceae) Analyzed by Chloroplast DNA Polymorphism

  • Techaprasan, Jiranan;Ngamriabsakul, Chatchai;Klinbunga, Sirawut;Chusacultanachai, Sudsanguan;Jenjittikul, Thaya
    • BMB Reports
    • /
    • v.39 no.4
    • /
    • pp.361-370
    • /
    • 2006
  • Genetic variation and molecular phylogeny of 22 taxa representing 14 extant species and 3 unidentified taxa of Boesenbergia in Thailand and four outgroup species (Cornukaempferia aurantiflora, Hedychium biflorum, Kaempferia parviflora, and Scaphochlamys rubescens) were examined by sequencing of 3 chloroplast (cp) DNA regions (matK, psbA-trnH and petA-psbJ). Low interspecific genetic divergence (0.25-1.74%) were observed in these investigated taxa. The 50% majority-rule consensus tree constructed from combined chloroplast DNA sequences allocated Boesenbergia in this study into 3 different groups. Using psbA-1F/psbA-3R primers, an insertion of 491 bp was observed in B. petiolata. Restriction analysis of the amplicon (380-410 bp) from the remaining species with Rsa I further differentiated Boesenbergia to 2 groupings; I (B. basispicata, B. longiflora, B. longipes, B. plicata, B. pulcherrima, B. tenuispicata, B. thorelii, B. xiphostachya, Boesenbergia sp.1 and Boesenbergia sp.3; phylogenetic clade A) that possesses a Rsa I restriction site and II (B. curtisii, B. regalis, B. rotunda and Boesenbergia sp.2; phylogenetic clade B and B. siamensis; phylogenetic clade C) that lacks a restriction site of Rsa I. Single nucleotide polymorphism (SNP) and indels found can be unambiguously applied to authenticate specie-origin of all investigated samples and revealed that Boesenbergia sp.1, Boesenbergia sp.2 and B. pulcherrima (Mahidol University, Kanchanaburi), B. cf. pulcherrima1 (Prachuap Khiri Khan) and B. cf. pulcherrima2 (Thong Pha Phum, Kanchanaburi) are B. plicata, B. rotunda and B. pulcherrima, respectively. In addition, molecular data also suggested that Boesenbergia sp.3 should be further differentiated from B. longiflora and regarded as a newly unidentified Boesenbergia species.

Characterization of the bacterial microbiota across the different intestinal segments of the Qinghai semi-fine wool sheep on the Qinghai-Tibetan Plateau

  • Wang, Xungang;Hu, Linyong;Liu, Hongjin;Xu, Tianwei;Zhao, Na;Zhang, Xiaoling;Geng, Yuanyue;Kang, Shengping;Xu, Shixiao
    • Animal Bioscience
    • /
    • v.34 no.12
    • /
    • pp.1921-1929
    • /
    • 2021
  • Objective: The intestinal microbiota enhances nutrient absorption in the host and thus promotes heath. Qinghai semi-fine wool sheep is an important livestock raised in the Qinghai-Tibetan Plateau; however, little is known about the bacterial microbiota of its intestinal tract. The aim of this study was to detect the microbial characterization in the intestinal tract of the Qinghai semi-fine wool sheep. Methods: The bacterial profiles of the six different intestinal segments (duodenum, jejunum, ileum, cecum, colon and rectum) of Qinghai semi-fine wool sheep were studied using 16S rRNA V3-V4 hypervariable amplicon sequencing. Results: A total of 2,623,323 effective sequences were obtained, and 441 OTUs shared all six intestinal segments. The bacterial diversity was significantly different among the different intestinal segments, and the large intestine exhibited higher bacterial diversity than the small intestine. Firmicutes, Bacteroidetes, and Patescibacteria were the dominant phyla in these bacterial communities. Additionally, at the genus level, Prevotella_1, Candidatus_Saccharimonas, and Ruminococcaceae_UCG-005 were the most predominant genus in duodenal segment, jejunal and ileal segments, and cecal, colonic, and rectal segments, respectively. We predicted that the microbial functions and the relative abundance of the genes involved in carbohydrate metabolism were overrepresented in the intestinal segments of Qinghai semi-fine wool sheep. Conclusion: The bacterial communities and functions differed among different intestinal segments. Our study is the first to provide insights into the composition and biological functions of the intestinal microbiota of Qinghai semi-fine wool sheep. Our results also provide useful information for the nutritional regulation and production development in Qinghai semi-fine wool sheep.

Effects of Dietary Carbohydrases on Fecal Microbiome Composition of Lactating Sows and Their Piglets

  • Lee, Jeong Jae;Song, Minho;Kyoung, Hyunjin;Park, Kyeong Il;Ryu, Sangdon;Kim, Younghoon;Shin, Minhye
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.776-782
    • /
    • 2022
  • Corn-soybean meal diets are commonly used in the pork industry as a primary source of energy and protein. However, such a diet generally contains non-starch polysaccharides (NSPs) which present a challenge in finding ways to improve their availability and digestibility. Dietary multi-carbohydrases (MCs) have been proposed as an efficient approach to utilize NSPs, and can result in improved growth performance and host intestinal fitness. In this study, we evaluated the effects of MC in lactation diets on gut microbiota composition of lactating sows and their litters. The experimental design contained two dietary treatments, a diet based on corn-soybean meal (CON), and CON supplemented with 0.01% multigrain carbohydrases (MCs). Sow and piglet fecal samples were collected on days 7 and 28 after farrowing. Based on the results from 16S rRNA gene amplicon sequencing, MC led to changes in species diversity and altered the microbial compositions in lactating sows and their piglets. Specifically, the MC treatment induced an increase in the proportions of Lactobacillus in piglets. Clostridium and Spirochaetaceae showed a significantly reduced proportion in MC-treated sows at day 28. Our results support the beneficial effects of dietary carbohydrases and their link with improved production due to better host fitness outcomes and gut microbiota composition.

Babeisa duncani infection alters gut microbiota profile in hamsters

  • Shangdi Zhang;Jinming Wang;Xiaoyun Li;Yanbo Wang;Yueli Nian;Chongge You;Dekui Zhang;Guiquan Guan
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.1
    • /
    • pp.42-52
    • /
    • 2023
  • The genus Babesia includes parasites that can induce human and animal babesiosis, which are common in tropical and subtropical regions of the world. The gut microbiota has not been examined in hamsters infected by Babesia duncani. Red blood cells infected with B. duncani were injected into hamsters through intraperitoneal route. To evaluate the changes in gut microbiota, DNAs were extracted from small intestinal contents, acquired from hamsters during disease development. Then, the V4 region of the 16S rRNA gene of bacteria was sequenced using the Illumina sequencing platform. Gut microbiota alternation and composition were assessed according to the sequencing data, which were clustered with >97.0% sequence similarity to create amplicon sequence variants (ASVs). Bacteroidetes and Firmicutes were made up of the major components of the gut microbiota in all samples. The abundance of Bacteroidetes elevated after B. duncani infection than the B. duncani-free group, while Firmicutes and Desulfobacterota declined. Alpha diversity analysis demonstrated that the shown ASVs were substantially decreased in the highest parasitemia group than B. duncani-free and lower parasitemia groups. Potential biomarkers were discovered by Linear discriminant analysis Effect Size (LEfSe) analysis, which demonstrated that several bacterial families (including Muribaculaceae, Desulfovibrionaceae, Oscillospiraceae, Helicobacteraceae, Clostridia UGG014, Desulfovibrionaceae, and Lachnospiraceae) were potential biomarkers in B. duncani-infected hamsters. This research demonstrated that B. duncani infectious can modify the gut microbiota of hamsters.

Correlation Analysis Study Between Spent Mushroom Substrate and Microbial Community (수확 후 버섯 배지와 미생물 군집의 상관관계 분석 연구)

  • In Kyu Lee;Hyun Seung Kim;Ji Min Woo;Won Jun Chang;Eun Jeong Byeon;Ki Byung Park;Youn Su Lee
    • The Korean Journal of Mycology
    • /
    • v.52 no.1
    • /
    • pp.61-71
    • /
    • 2024
  • Next-generation sequencing of shiitake, oyster, and king oyster spent mushroom substrates collected from Chun-cheon, Yeo-ju, Hong-cheon, Gwang-ju, Ui-ryeong, and A-san was performed. Metabarcoding analysis using amplicon sequence variants was performed to confirm the microbial content ratio in the medium after harvesting the collected mushrooms; the ratio of the contents of various microorganisms in the medium after mushroom harvest varied depending on the materials added to produce the mushroom medium. The WPGMA analysis of the similarity between microbial communities, which was based on the β-diversity, confirmed that the microbial communities in the substrates of the different mushroom varieties were similar.