DOI QR코드

DOI QR Code

Correlation Analysis Study Between Spent Mushroom Substrate and Microbial Community

수확 후 버섯 배지와 미생물 군집의 상관관계 분석 연구

  • In Kyu Lee (Department of Applied Plant Sciences, Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Hyun Seung Kim (Department of Applied Plant Sciences, Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Ji Min Woo (Department of Applied Plant Sciences, Kangwon National University) ;
  • Won Jun Chang (Department of Applied Plant Sciences, Interdisciplinary Program in Smart Agriculture, Kangwon National University) ;
  • Eun Jeong Byeon (Department of Applied Plant Sciences, Kangwon National University) ;
  • Ki Byung Park (Jungbubiotech) ;
  • Youn Su Lee (Department of Applied Plant Sciences, Interdisciplinary Program in Smart Agriculture, Kangwon National University)
  • 이인규 (강원대학교 스마트농업융합학과) ;
  • 김현승 (강원대학교 스마트농업융합학과) ;
  • 우지민 (강원대학교 식물자원응용과학과) ;
  • 장원준 (강원대학교 스마트농업융합학과) ;
  • 변은정 (강원대학교 식물자원응용과학과) ;
  • 박기병 (중부바이오텍) ;
  • 이윤수 (강원대학교 스마트농업융합학과)
  • Received : 2024.01.31
  • Accepted : 2024.03.29
  • Published : 2024.03.31

Abstract

Next-generation sequencing of shiitake, oyster, and king oyster spent mushroom substrates collected from Chun-cheon, Yeo-ju, Hong-cheon, Gwang-ju, Ui-ryeong, and A-san was performed. Metabarcoding analysis using amplicon sequence variants was performed to confirm the microbial content ratio in the medium after harvesting the collected mushrooms; the ratio of the contents of various microorganisms in the medium after mushroom harvest varied depending on the materials added to produce the mushroom medium. The WPGMA analysis of the similarity between microbial communities, which was based on the β-diversity, confirmed that the microbial communities in the substrates of the different mushroom varieties were similar.

버섯 배지에 첨가되는 재료에 따라 변하는 수확 후 배지내의 세균 군집도를 확인하여 더 넓은 재활용 연구에 기여하고자 춘천, 여주, 홍천, 광주, 의령, 아산에서 수집한 표고, 느타리, 새송이버섯의 수확 후 배지를 대상으로 차세대 염기서열 분석을 진행하였다. ASV 값을 기반으로 α-diversity인 Rarefaction, Chao1, Shannon, Gini-Simpson를 분석한 결과, 유일하게 폐면이 혼합되어 있는 느타리버섯 수확 후 배지인 H-NT 처리구의 세균다양성이 매우 풍부하였다. 또한 β-diversity의 WPGMA를 이용하여 처리구간 세균 군집의 유사성을 분석한 결과, 버섯 종류에 따라 유연관계가 가까운 것을 확인하였다. 본 연구를 시작으로 작물 및 토양에 유용한 특정 세균 비율이 높게 분포하고 있는 수확 후 배지를 연구한다면 맞춤형 유기농자재로서의 활용 가능성이 있음을 시사한다.

Keywords

Acknowledgement

This study was supported by Industry-academia-research collaboration R&D project (RS-2023-00223480) from the Ministry of SMEs and Startups.

References

  1. Phithakrotchanakoon C, Mayteeworakoon S, Siriarchawatana P, Kitikhun S, Harnpicharnchai P, Wansom S, Eurwilaichitr L, Ingsriswang S. Beneficial bacterial-Auricularia cornea interactions fostering growth enhancement identified from microbiota present in spent mushroom substrate. Front Microbiol 2022;13:1006446.
  2. MAFRA (Ministry of Agriculture. Food and Rural Affairs). Main statistics of the Ministry of Ministry of Agriculture. Food and Rural Affairs for information [Internet]. Sejong: MAFRA; 2023 [cited 2024 Jan 5]. Available from https://www.mafra.go.kr/.
  3. Williams BC, McMullan JT, McCahey S. An initial assessment of spent mushroom compost as a potential energy feedstock. Bioresource Technol 2009;79:227-30. https://doi.org/10.1016/S0960-8524(01)00073-6
  4. Kim CG, Lee JH, Yoon YM. Biochemical methane potential analysis of mushroom waste medium. J Korea Org Resour Recycl Assoc 2022;30:13-21. https://doi.org/10.17137/KORRAE.2022.30.1.13
  5. Kim YI, Seok JS, Kwak WS. Evaluation of microbially ensiled spent mushroom (Pleurotus osteratus) substrates (bed-type cultivation) as a roughage for ruminants. J Anim Sci Technol 2010;52:117-24. https://doi.org/10.5187/JAST.2010.52.2.117
  6. Gyeong GC, Lee HD, Jeong YP, Jang KY, Yoon MH. Effect of mixed material characteristics on compost production using button mushroom waste medium. Korean J Soil Sci Fert 2010;43:335-40.
  7. Leong YK, Ma TW, Chang JS, Yang FC. Recent advances and future directions on the valorization of spent mushroom substrate (SMS): a review. Bioresour Technol 2022;344:126157.
  8. Jiang H, Zhang M, Chen J, Li S, Shao Y, Yang J, Li J. Characteristics of bio-oil produced by the pyrolysis of mixed oil shale semi-coke and spent mushroom substrate. Fuel 2017;200:218-24. https://doi.org/10.1016/j.fuel.2017.03.075
  9. Atallah E, Zeaiter J, Ahmad MN, Leahy JJ, Kwapinski W. Hydrothermal carbonization of spent mushroom compost waste compared against torrefaction and pyrolysis. Fuel Process Technol 2021;216:106795.
  10. Mahari WAW, Peng W, Nam WL, Yang H, Lee XY, Lee YK, Liew RK, Ma NL, Mohammad A, Sonne C, et al. A review on valorization of oyster mushroom and waste generated in the mushroom cultivation industry. J Hazard Mater 2020;400:123156.
  11. Zheng W, Tsompana M, Ruscitto A, Sharma A, Genco R, Sun Y, Buck MJ. An accurate and efficient experimental approach for characterization of the complex oral microbiota. Microbiome 2015;3:1-11. https://doi.org/10.1186/s40168-014-0066-1
  12. Caporaso JG, Justin K, Jesse S, Kyle B, Frederic DB, Elizabeth KC, Noah F, Antonio GP, Julia KG, Jeffrey IG, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7:335-6. https://doi.org/10.1038/nmeth.f.303
  13. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. Journal 2011;17:10-2. https://doi.org/10.14806/ej.17.1.200
  14. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 2016;13:581-3. https://doi.org/10.1038/nmeth.3869
  15. Rambaut A. FigTree (2018); http://tree.bio.ed.ac.uk/software/figtree/
  16. Sun R, Zhang XX, Guo X, Wang D, Chu H. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biol Biochem 2015;88:9-18. https://doi.org/10.1016/j.soilbio.2015.05.007
  17. Cayuela L, Gotelli NJ, Colwell RK. Ecological and biogeographic null hypotheses for comparing rarefaction curves. Ecol Monogr 2015;85:437-55. https://doi.org/10.1890/14-1261.1
  18. Liu N, Zhou J, Han L, Ma S, Sun X, Huang G. Role and multi-scale characterization of bamboo biochar during poultry manure aerobic composting. Bioresour Technol 2017;241:190-9. https://doi.org/10.1016/j.biortech.2017.03.144
  19. Nagendra H. Opposite trends in response for the Shannon and Simpson indices of landscape diversity. Appl Geogr 2002;22:175-86. https://doi.org/10.1016/S0143-6228(02)00002-4
  20. Ha TM, Yoon SM, Joo YC, Sung JM. The biochemical characteristics of oyster mushroom waste cotton medium by fermentation conditions. Kor J Mycol 2008;36:163-71. https://doi.org/10.4489/KJM.2008.36.2.163
  21. Shim MS. Physiology of substrate fermentation and substrate making. Mushroom (in Korean) 2001; 5:53-77.
  22. Lozupone CA, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 2005;71:8228-35. https://doi.org/10.1128/AEM.71.12.8228-8235.2005
  23. Lozupone CA, Hamady M, Kelley ST, Knight R. Quantitative and qualitative β-diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol 2007;73:1576-85.
  24. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Gordon JI. Evolution of mammals and their gut microbes. Science 2008;320:1647-51. https://doi.org/10.1126/science.1155725
  25. Jenkins JR, Viger M, Arnold EC, Harris ZM, Ventura M, Miglietta F, Taylor G. Biochar alters the soil microbiome and soil function: results of next-generation amplicon sequencing across Europe. Gcb Bioenergy 2017;9:591-612. https://doi.org/10.1111/gcbb.12371
  26. Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria. Ecology 2007;88:1354-64. https://doi.org/10.1890/05-1839
  27. Woo SM, Park YH, Yoo YB, Shin HH, Armored Y, Lee KH, Sung JM. Development on artificial cultivation method of Hatakeshimeji (Lyophyllum decastes) using fermented sawdust substrate. J Mushrooms 2009;7:156-62.
  28. Yildiz S, Yildiz uC, Gezer ED, Temiz A. Some lignocellulosic wastes used as raw material in cultivation of the Pleurotus ostreatus culture mushroom. Process Biochem 2002;38:301-6. https://doi.org/10.1016/S0032-9592(02)00040-7
  29. Lam SS, Lee XY, Nam WL, Phang XY, Liew RK, Yek PN, Ho YL, Ma NL, Rosli MH. Microwave vacuum pyrolysis conversion of waste mushroom substrate into biochar for use as growth medium in mushroom cultivation. J Chem Technol Biotechnol 2019;94:1406-15. https://doi.org/10.1002/jctb.5897
  30. Suwannarach N, Kumla J, Zhao Y, Kakumyan P. Impact of cultivation substrate and microbial community on improving mushroom productivity: a review. Biology 2022;11:569.
  31. Kolton M, Meller HY, Pasternak Z, Graber ER, Elad Y, Cytryn E. Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Appl Environ Microbiol 2011;77:4924-30. https://doi.org/10.1128/AEM.00148-11
  32. Uke A, Nakazono-Nagaoka E, Chuah JA, Zain NAA, Amir HG, Sudesh K, Abidin NZHAZ, Hashim Z, Kosugi A. Effect of decomposing oil palm trunk fibers on plant growth and soil microbial community composition. J Environ Manag 2021;295:113050.
  33. Yu S, Wang Z, Li Q, Wang T, Zhao W. Innovative application of a novel di-d-fructofuranose 1, 2': 2, 3'-dianhydride hydrolases (DFA-IIIase) from Duffyella gerundensis A4 to burdock root to improve nutrition. Food and Function 2024;15:1021-30.
  34. Straley SC, Skrzypek E, Plano GV, Bliska JB. Yops of Yersinia spp. pathogenic for humans. Infect Immun 1993;61:3105-10. https://doi.org/10.1128/iai.61.8.3105-3110.1993
  35. Ayyadurai S, Houhamdi L, Lepidi H, Nappez C, Raoult D, Drancourt M. Long-term persistence of virulent Yersinia pestis in soil. Microbiology 2008;154:2865-71. https://doi.org/10.1099/mic.0.2007/016154-0
  36. Kim BY, Lee SY, Weon HY, Kwon SW, Go SJ, Park YK, Schumann P, Fritze D. Ureibacillus suwonensis sp. nov., isolated from cotton waste composts. Int J Syst Evol Microbiol 2006;56:663-6. https://doi.org/10.1099/ijs.0.63703-0