• 제목/요약/키워드: Amphibolite

검색결과 84건 처리시간 0.043초

중부옥천변성대의 활석광화작용에 관한 연구 (II) : 풍전활석광상을 중심으로 (Talc Mineralization in the Middle Ogcheon Metamorphic Belt (II) : Poongjeon Talc Deposit)

  • 박희인;이인성;허순도;신동복
    • 자원환경지질
    • /
    • 제30권6호
    • /
    • pp.543-551
    • /
    • 1997
  • Poongjeon talc deposits is emplaced in dolomite and dolomitic limestone of the Cambro-Ordovician Samtaesan Formation. Ore in Poongjeon is low grade talc and the deposit has been known as the contact metasomatic or hydrothermal replacement type related to the intrusion of late Cretaceous granite in this area. X-ray diffraction, electron microprobe analysis, fluid inclusion and stable isotope analysis were utilized to examine the mineralogy of the ore and the origin of the ore fluid. The ore from Poongjeon mine mainly consists of talc and tremolite with minor amount of illite, vermiculite, smectite, and chlorite-vermiculite mixed layer. Occurrence of ore body indicates that the talc-tremolite ore was formed through the replacement by the $SiO_2$-rich hydrothermal fluid along the bedding and dike boundaries, or contact of amphibolite and basic dike with carbonate rocks. The temperature and pressure of the ore forming fluids at the time of the talc mineralization were estimated as $350^{\circ}C$ and 400 bar, respectively, based on the heating and freezing data of the fluid inclusions in quartz from talc-tremolite veins. During the talc-tremolite formation, fluids were divided into $CO_2$-enriched fluid and $CO_2$-poor fluid from $CO_2$ immiscibility (or effervescence). Oxygen isotope values (${\delta}^{18}O$) of the talc-tremolite fall within a range between 12.2 and 12.9‰. Hydrogen isotope values(${\delta}D$) of the ore range from -60 to -85‰ and $H_2O$ contents range from 2.0 to 3.4 wt.%. ${\delta}^{18}O$ and ${\delta}D$ values of talc ore indicate that the hydrothermal fluid involved in talc-tremolite formation was of igneous origin. Oxygen and hydrogen isotopic exchange between talc ore and the surface water was negligible after talc-tremolite ore formation.

  • PDF

선(先)캠브리아기(紀) 분천(汾川) 및 홍제사화강암류(홍제사화강암류)의 흑운모(黑雲母)에 대(對)한 K-Ar 연대측정(年代測定) (K-Ar Ages on Biotites of the Proterozoic Buncheon and Hongjesa Granitic Rocks in the northeastern Part of the Sobaegsan Massif)

  • 홍영국;최태윤
    • 자원환경지질
    • /
    • 제19권2호
    • /
    • pp.147-151
    • /
    • 1986
  • K-Ar ages on biotites have been determined from the Proterozoic Buncheon and Hongjesa granitic rocks in comparison with the Rb-Sr whole-rock ages to investigate the ages of metamorphic events. The Rb-Sr whole-rock ages determinations on the Buncheon and Hongjesa granitoid rocks were previously reported as 2,100Ma and 1,700Ma, respectively. K-Ar ages on biotites separated from the studied rock have revealed three different age groups such as 1) 1,200~1,300Ma, 2) 600~700Ma and 3) 300~400Ma. The Rb-Sr whole-rock ages for the granitic rocks represent the time of emplacement, whereas the K-Ar ages on biotites generally indicate the time of metamorphism or alteration. The large discordance in the two age systems may not be explained as indicating the cooling period of the granitic batholiths. The K-Ar ages on biotites from the granitoid rocks might not be simply interpreted as the age of the last phase of metamorphism, since the granitic rocks had been undergone multistages of amphibolite facies-metamorphism in the Precambrian period. During the multistages of intermediate grade metamorphism, $^{40}Ar$-loss could be inevitably taken place as the metamorphic temperatures went up above the blocking temperature of biotite ($300{\pm}50^{\circ}C$). The results of the K-Ar dating on biotites from this study are probably minimum ages or hydrothermal alteration ages.

  • PDF

옥천대내 상내리 조립현무암질 암상에서의 마그마 분화와 광물의 집적 (Magma Differentiation and Mineral Accumulation of the Sangnae-ri Dolerite Sill in the Okchon Belt)

  • 안건상;김희남;신인현
    • 자원환경지질
    • /
    • 제26권3호
    • /
    • pp.363-370
    • /
    • 1993
  • 옥천대에는 다양한 종류의 화산암이 산출하며, 특히 문경지역을 중심으로 다양한 두께의 조립현무암질 암상이 다수 관찰된다. 이런 암류에 대한 과거의 지구화학적 연구에서는 전암성분의 계통적인 변화를 마그마의 분별정출작용에 의한 것으로 해석하였다. 상내리지역에 분포한 조립현무암질 암상중 가장 잘 분화된 두번째 암상은 수직적으로 광물입자의 발달이 현저하게 변화하며, 그에 따라 전암성분도 계통적으로 변화한다. 이러한 성분변화가 마그마의 분별정출작용에 의한 것인지를 확인하기위하여 광물의 입출에 대한 최소자승법을 이용하였으며, Iwamori (1989)의 컴퓨터프로그램을 사용하였다. 계산 결과는 암상에서 보여준 선암성분의 변화는 분별정출작용에 의한 것이 아니라, 마그마의 관입전이나 관입직후에 만들어 졌을것으로 보여지는 반정들(감람석, 사장석, 단사휘석, 자철석)의 차별적 집적에 의한 것으로 나타났다. 또한 분화의 최종산물인 Patch 형태의 백색산성암은 분별작용의 결과임이 분명하다.

  • PDF

평해-울진 지역 선캠브리아기 기성통의 부재 및 평해통과 원남통의 관계에 대한 소고 (A note on absence of Giseong Series and relation of Precambrian Pyeonghae Series and Wonnam Series of Pyeonghae-Uljin area)

  • 김남훈;박계헌;송용선;강지훈
    • 암석학회지
    • /
    • 제11권3_4호
    • /
    • pp.271-277
    • /
    • 2002
  • 영남육괴 북동부 지역에 분포하는 선캠브리아기 변성암류는 평해통, 기성통, 원남통, 평해화강편마암, 하다우백질화강편마암으로 명명피어있다. 평해통과 원남통은 분포하는 암상에는 큰 차이가 없으나 단지 중간에 변성화산암류라 여겼던 기성통이 존재함으로서 두 층들이 다른 시기에 형성된 다른 층으로 구분되었다. 하지만 야외조사결과 기성통은 변성화산암류가 아니며 기존의 변성암류가 연성전단운동의 결과로 변형되어 일부 노두에서는 마치 변성화산암과 같은 외양을 갖는 전단대라고 판단된다. 그리고 평해통과 원남통 모두가 상부각섬암상의 변성작용을 겪었으므로 설사 둘 사이에 화산암류가 있었다하더라도 현재는 고도변성작용을 겪은 변성화산암으로 나타나야만 할 것이다. 평해통과 원남통을 구분짓는 근거의 부재를 의미하며. 두 층은 하나로 간주하는 것이 좋을 것이다.

Al-Fe Partitioning between Coexisting Garnet and Epidote from Metamorphic Rocks

  • Kim, Hyung-Shik;Kim, Young-Kyum;Jang, Young-Nam
    • 암석학회지
    • /
    • 제2권2호
    • /
    • pp.63-73
    • /
    • 1993
  • The assemblage epidote and grandite garnet occurs in low-to medium-grade metabasites and calc schists of various geotectonic settings and in hydrothermally altered calcareous rocks in skarn deposits. The compositions of sixteen epidote-garnet paris have been analysed by means of electron microprobe. Al-Fe partitioning between coexisting grandite garnet and epidote is considered and measured at the grain boundaries on the supposition that the surface equilibrium was maintained in the following exchange reaction: 2$Ca_2Al_3Si_3O_12$(OH)+$Ca_3Fe_2Si_3O_12$=2$Ca_2A_l2FeSi_3O_12$(OH)+$Ca_3Al_2Si_3O_12$ Partition coefficients confirms the differences in thermal conditions between low-grade and medium-grade metamorphic rocks. $K_D$ values ($X_{$CO_2$}$=($Fe^{+3}$/Al)$^{Ep}$/($Fe^{+3}$/Al)$^{Gr}$, where Fe=$Fe^{+3}$) from greenschist facies rocks of the estimated metamorphic temperatures, 330~$390^{\circ}C$, range approximately between 0.02 and 0.17. Epidote-amphibolite facies rocks and calcareous skarns of the estimated temperatures, 400~$550^{\circ}C$, have $K_D$ values between 0.24 and 0.37. $K_D$ values from the rocks of the temperatures, 640~$700^{\circ}C$, range nearly between 0.58 and 0.75. The diagrams in Figs. 2 and 3 can serve as a mineralogic thermometer for relatively shallow rocks, assuming that the pressure dependence of partition coefficients for the iron-exchange reaction in the two minerals can be neglected.

  • PDF

전라북도 오수-진안 지역에 분포하는 변성퇴적암류에 대한 변성작용 (Metamorphism of the Meta-Sedimentary Rocks in the Osu-Jinan Area, Cheonrapuk-Do, Korea)

  • 안건상;김용준;신인현
    • 자원환경지질
    • /
    • 제30권2호
    • /
    • pp.163-174
    • /
    • 1997
  • Precambrian metapelites and metapsammites of the Jinan-Osu area (so-called Seologri and Yongamsan Formation) consist of black slate, phyllite, mica schist, quartzite and rarely calc schist. They are intruded by Sunkagsan granite gneiss, Foliated granodiorite, Amphibolite, Sunchang foliated granite and Namwon granite. Mylonite texture, crenulation cleavage and minor shear zone are common. The meta-sedimentary rocks include various rock-fragments xenoliths in size (up to 3 cm) and rock-type. They have various porphyroblastic spots in size (up to 1 cm) and their mineral composition is different. The xenoliths are schists, granite and quartzite, which are rectangular or lens form and recrystallized muscovite, chlorite and quartz. Spots are andalusite and biotite aggregates extensively replaced by chlorite. The metamorphic terrain is divided into three zones of progressive metamorphism on the basis of mineral assemblage. They are chlorite zone, chloite-biotite zone and andalusite-biotite zone ascending order, from west to east approximately. Isograd reactions are phengitic muscovite + chlorite = less phengitic muscovite + biotite + quartz + $H_2O$ and muscovite + chlorite + quartz = andalusite + biotite + $H_2O$ between the chlorite zone and chlorite-biotite zone, and between the chloritebiotite zone and andalusite-biotite zone, respectively. Sample B6 (exposed near the Obong-ri) includes staurolites and greenish biotites, that is different in mineral assemblage and chemical composition from the meta-sedimentary rocks. Sample A12 (exposed near the Shinam-ri) has greenish white spots (up to 1 cm in diameter) mainly composed of Kfeldspar, quartz and sillimanite replaced by muscovite.

  • PDF

충남지역 사문암내 감람석과 휘석의 사문석화작용 (Serpentinization of Olivine and Pyroxene in Chungnam Serpentinites, Korea)

  • 김영태;우영균
    • 한국지구과학회지
    • /
    • 제26권3호
    • /
    • pp.297-304
    • /
    • 2005
  • 충남지역 사문암은 주로 사문석으로 구성되어 있으며, 감람석 기원의 사문석은 감람석의 가상을 이루고 있고 이 사문석결정들의 외곽을 자철석들이 둘러싸서 전체적으로 망상구조를 보인다. 또한 사문암중에는 부분적으로 기원암인 더나이트와 해즈버자이트의 잔류 구성광물인 감람석과 휘석이 이들의 결정경계나 결정내 간극을 따라 사문석화가 일어났다. 감람석에서 사문석으로 변할 때 Mg 이온은 크게 감소하고, Si 이온은 크게 증가하였으며 $Fe^{2+}\; Fe^{3+}$ 이온이 약간 감소하였고, 이 철들이 자철석을 형성하였다. 휘석에서 사문석으로 변할 때 Si 이온은 크게 감소하고 Mg 이온은 크게 증가하였으며, 기타 이온은 별 변화가 없다. 충남지역 사문암의 기원암인 더나이트와 해즈버자이트로부터의 사문석화작용은 기원암이 형성된 후 작용한 여러 가지 물에 의해서, 그리고, 녹색편암상 내지 각섬암상에서 백립암상에 이르는 변성작용시의 변성수의 영향으로 이루어졌다.

쌍전중석광상(雙田重石鑛床)의 광물공생(鑛物共生)과 유체포유물연구(流體包有物硏究) (Mineral Paragenesis and Fluid Inclusion Study of Ssangjeon Tungsten Deposits)

  • 윤석태;박희인
    • 자원환경지질
    • /
    • 제15권4호
    • /
    • pp.221-233
    • /
    • 1982
  • Ssangjeon tungsten ore deposits is a complex pegmatite deposits embedded along the contact between pre-Cambrian Buncheon granite gneiss and amphibolite. This pegmatite vein developed 2 km along the strike and thickness varies from 10m to 40m. Mineral constituent of the normal pegmatite are quartz, microcline, plagioclase, muscovite, biotite, tourmaline and garnet. The vein paragenesis is complicated by repeated deposition of quartz but three distinct depositional stage can be recognized. Quartz A stage is the stage of the earliest milky white quartz deposition as a rock forming mineral of normal pegmatite. Quartz B stage is the stage of gray to dark gray quartz replace earlier formed normal pegmatite minerals. Quartz C stage is the stage of latest white translucent massive quartz replace quartz A and B. Tungsten ore minerals and other sulfide minerals were precipitated during quartz B stage. Ore minerals are ferberite and scheelite. Minor amount of molybdenite, arsenopyrite, pyrrhotite, pyrite, chalcopyrite, sphalerite, galena, pentlandite, bismuthinite, native bismuth and marcasite accompanied. Fluid inclusion in quartz A and B are gaseous inclusions and liquid inclusions are contained in quartz C as a primary inclusions. Salinity of inclusions in quartz A and B ranges from 4.5 to 9.5 wt. % and from 5.1 to 6.0 wt. % equivalent NaCl respectively. Homogenization temperature of quartz A; quartz B and quartz C ranges from 415 to $465^{\circ}C$, from 397 to $441^{\circ}C$ and from 278 to $357^{\circ}C$. $CO_2$ content of the ore fluid increased at the ends of quartz B stage.

  • PDF

옥천대(沃川帶)의 지질(地質) 및 광물자원(鑛物資源)에 관(關)한 연구(硏究) -평창(平昌)~제천간(堤川間)에 분포(分布)하는 옥천대하부(沃川帶下部)와 기반(基盤)의 암상(岩相) 및 화성(火成) 관입체(貫入體)의 암질(岩質)에 대(對)한 연구(硏究)- (Petrologic Study on the Basement and the Lower Part of Ogcheon Zone and Igneous Intrusives in the Pyeongchang-Jecheon Area)

  • 이대성;나기창;김용준
    • 자원환경지질
    • /
    • 제18권4호
    • /
    • pp.381-397
    • /
    • 1985
  • A petrological study has been done in the pyeongchang-Jaecheon area which is a northwestern part of the basement of Ogcheon zone for the purpose of comparison of the area to the Nogjeon-Yeongchun area which is the antipodal basement of the zone in the petrological and geotectonical view points. The major units of the area are Precambrian granitic gneissic complex, banded gneiss, linea ted leucocratic gneiss and pegmatitic leucogranitic gneiss in the west, elongated exposure of quartz schist (or partly quartzite) and phyllite, named as Jungdaegal-bong Group correlated to the lower sequence of Joseon Group, in the middle, and limestone and calcic dolomite, Iptanri Formation, correlated to the middle of Joseon Group in the east. Igneous plutons are distributed in the areas of gneissic complex and limestone formation as well as in the Eosangcheon and Daedaeri areas in the southeastern out of the area. Present study reveals that the gneissic complex are the products of granitization to metamorphism of amphibolite facies in the order of above mentioned from the metasediments of schists and calcareous rocks. A notable characteristics of the phyllite of Jungdaegal-bong Group is the presence of syntectonically segregated quartz rods in the forms of lens, swirl or boudinage in evenly distributed in the phyllitic to chloritic matrix. Igneous rocks range in composition from gabbro through diorite, granodiorite, to schistosed and porphyritic granites in stock and dike. The orogenic movement of the Ogcheon zone initiated in the middle Proterozoic time, pre-sedimentation of Ogcheon Group and superposed the granitization in Permian, Jurassic Daebo orogeny with granitic batholiths and stocks, and Cretaceous plutonic intrusion.

  • PDF

Effect of Intermediate Principal Stress on Rock Fractures

  • Chang, Chan-Dong
    • 한국지구과학회지
    • /
    • 제25권1호
    • /
    • pp.22-31
    • /
    • 2004
  • Laboratory experiments were conducted in order to find effects of the intermediate principal stress of ${\sigma}_{2}$ on rock fractures and faults. Polyaxial tests were carried out under the most generalized compressive stress conditions, in which different magnitudes of the least and intermediate principal stresses ${\sigma}_{3}$ and ${\sigma}_{2}$ were maintained constant, and the maximum stress ${\sigma}_{1}$, was increased to failure. Two crystalline rocks (Westerly granite and KTB amphibolite) exhibited similar mechanical behavior, much of which is neglected in conventional triaxial compression tests in which ${\sigma}_{2}$ = ${\sigma}_{3}$. Compressive rock failure took the form of a main shear fracture, or fault, steeply dipping in ${\sigma}_{3}$ direction with its strike aligned with ${\sigma}_{2}$ direction. Rock strength rose significantly with the magnitude of ${\sigma}_{2}$, suggesting that the commonly used Mohr-type failure criteria, which ignore the ${\sigma}_{2}$ effect, predict only the lower limit of rock strength for a given ${\sigma}_{3}$ level. The true triaxial failure criterion for each of the crystalline rocks can be expressed as the octahedral shear stress at failure as a function of the mean normal stress acting on the fault plane. It is found that the onset of dilatancy increases considerably for higher ${\sigma}_{2}$. Thus, ${\sigma}_{2}$ extends the elastic range for a given ${\sigma}_{3}$ and, hence, retards the onset of the failure process. SEM inspection of the micromechanics leading to specimen failure showed a multitude of stress-induced microcracks localized on both sides of the through-going fault. Microcracks gradually align themselves with the ${\sigma}_{1}$-${\sigma}_{2}$ plane as the magnitude of ${\sigma}_{2}$ is raised.