• Title/Summary/Keyword: Amount of water evaporation

Search Result 141, Processing Time 0.027 seconds

A Study on the thermal Kinetics for Disposal of Sewage Sludge Using Thermal Wind Drying of One mechanical Power (ONE구동 열풍건조시스템을 이용한 하수슬러지 감량화를 위한 열적거동 연구)

  • Bae, Hae-Ryong;Ha, Sang-An
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.2
    • /
    • pp.74-84
    • /
    • 2005
  • The objectives of this study was to investigate the improvement of thermal kinetics for disposal of sewage sludge using thermal wind drying. The operational parameters varied are the temperature of $130{\sim}170^{\circ}C$ and evaporation velocity WD. Important parameters effect on thermal kinetics for evaporation of water in sewage sludge studied include the drying time, water content of sewage sludge, solids amount of sewage sludge(TS%) by the varied temperature. The saturation point of water evaporation was observed at the drying time of 60 min in conditions of drying temperature $170^{\circ}C$ and drying time of 120 min by drying temperature $130^{\circ}C$ and WD=0.95 m/s. Operation at drying temperature of $170^{\circ}C$ led to higher rate of evaporation than those 130, $150^{\circ}C$ at WD=1.0 m/s and WD=1.0 m/s was higher than WD=0.5 m/s at drying temperature of $130^{\circ}C$.

  • PDF

An Experimental Study to Improve the Characteristics of Electrode Type Humidifier (전극형 가습기의 특성을 개선하기 위한 실험적인 연구)

  • Park, Kyu-Hong;Song, Ha-Jin;Byun, Jae-Young
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.3
    • /
    • pp.310-315
    • /
    • 2009
  • This investigation was performed to study the characteristics of electricity and heat transfer that occur in the cylinder of electrode type humidifier during the process of water evaporation. Measurements were made to obtain the amount of water evaporation, the consumption of electric power, electrical conductivity, etc according to the materials and shapes of electrode. When the humidifier was in non-drain controlled mode, the number and amplitude of current cycle per minute increased gradually with the lapse of time, whereas for drain controlled mode, it decreased about 40[%] after draining water. It was found that for non-drain controlled mode, the thermal efficiency of humidifier which used SS400, STS316 and wire net electrode type was about 95~96[%] and it was 2~4[%] higher than that of drain controlled mode. Also, it was shown that the thermal efficiency of humidifier which used neighboring six-phase electrode balanced electrically was 4[%] higher than that of existing six-phase type.

Assessmnnt of Optinal Amount of Water Resources by Groundwater Dam (지하댐에 의한 안정적 적정개발가능량 평가)

  • Park Chang Kun;Park Jae Hyeon;Kim Dae Kun;Yang Jung Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.260-264
    • /
    • 2005
  • Effective use of water resources has become a social problem because the deficit of water comes from population growth and Industrial development. Therefore, the conjunctive operation of surface water and groundwater will become an alternative. Groundwater has many advantages for the evaporation and effect of rainfall compared with surface water. Although the available amount of groundwater is small, groundwater dam can be used complementarily because of the sustainable supply of water. A calculating technique of the optimal amount of water resources by the groundwater dam was developed. A pilot site was selected to assess the optial amount of groungwater for the designed groungwater dam. If the developed technique is more refined by the measured data, the groundwater dam will become a good alternative to develope the water resources in the water deficit area.

  • PDF

A Study on the Rapid Cooling Vacuum System for the Storage and Transportation of the Cold Agriculture and Livestock Products (농축산물의 저장 및 유통을 위한 감압증발 급냉각 시스템에 관한 연구)

  • 김성규;김원녕;김경석;최순열;전현필
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.26-36
    • /
    • 1997
  • Recently, the new refrigerating system, using non - fluorinated hydrocarbon refrigerants has to be developed for the agricultural fields. One of that kinds of systems is the cooling system using the water vapor and vacuum, in which the water evaporate at the low temperature under vacuum and absorb the large amount of the latent heat. If vapor with large amount of latent heat is removed from the system, the system is cooled accordingly. The characteristics of cooling under the vacuum was observed and measured using experimental apparatus, which is consisted of vacuum chamber, the ejectors, the pumps and the measurement apparatus. As the results of experiments, we know that the evaporation in the vacuum occurs vigorously when the materials to be cooled has more amounts of heat before cooling, and by which effects the materials can be cooled. The cooling vacuum system is more efficient than other methods when the agricultural products is chilled or dried.

  • PDF

Preparation and Characterization of Poly(lactide-co-glycolide) Micro-spheres for the Sustained Release of AZT

  • Gilson Khang;Lee, Jin-Ho;Lee, Jin-Whan;Cho, Jin-Cheol;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • v.8 no.2
    • /
    • pp.80-88
    • /
    • 2000
  • Biodegradable microspheres were prepared with poly(L-lactide-co-glycolide) (PLGA, 75 : 25 by mole ratio) by an oil/oil solvent evaporation method for the sustained release of anti-AIDS virus agent, AZT The microspheres of relatively narrow size distribution (7.6$\pm$ 3.8 ㎛) were obtained by controlling the fabrication conditions. The shape of microspheres prepared was smooth and spherical. The efficiency of AZT loading into the PLGA microsphere was over 93% compared to that below 15% for microspheres by a conventional water/oil/water method. The effects of Preparation conditions on the morphology and in vitro AZT release pattern were investigated. in vitro release studies showed that different release pattern and release rates could be achieved by simply modifying factors in the fabrication conditions such as the type and amount of surfactant, initial amount of loaded drug, the temperature of solvent evaporation, and so on. PLCA microspheres prepared by 5% of initial drug loading, 1.0% (w/w) of surfactant concentration, and 25$\^{C}$ of solvent evaporation temperature were free from initial burst effect and a near-zero order sustained release was observed. Possible mechanisms of the near-zero order sustained release for our system have been proposed.

  • PDF

Design and Evaluation of Multiple Effect Evaporator Systems According to the Steam Ejector Position (증기 이젝터 위치에 따른 다중효용증발시스템의 설계 및 성능분석)

  • Kim, Deukwon;Choi, Sangmin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.11
    • /
    • pp.434-443
    • /
    • 2016
  • The evaporation of water from an aqueous solution is widely used in the food, desalination, pulp, and chemical industries. Usually, a large amount of energy is consumed in the evaporation process to boil off water due to atmospheric pressure. As a way of improving the energy efficiency of the evaporation process, the combination of multiple effect evaporation and thermal vapor recompression has been proposed and has become a successful technique. In this study, 4 multiple-effect falling film type evaporators for sugar solution are designed and the energy efficiency of the system is analyzed in response to the selection of the steam ejector position. Energy efficiency is increased and vapor is more compressed in the steam ejector as the Thermal Vapor Recompression (TVR) is arranged in the rear part of the evaporator system. A simplified 0-dimensional evaporator model is developed using non-linear equations derived from mass balances, energy balances, and heat transfer equations. Steam economy is calculated to compare the evaporation performance of the 4 proposed evaporators. The entrainment ratio, compression ratio, and expansion ratio are computed to check the ejector performance.

Estimation of Potential Water Resources in Mega Cities in Asia

  • Takuya, Komura;Toshitsugu, Moroizumi;Kenji, Okubo;Hiroaki, Furumai;Yoshiro, Ono
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.75-81
    • /
    • 2008
  • The water shortage in mega cities in Asia, which face a rapid growth in urban population, is an outstanding problem. It is important, therefore, to accurately estimate the water balance in each city in order to use the limited water resources effectively. In this study, we estimated the potential water resources in し sixteen mega cities in Asia. The target cities were Delhi and Calcutta, India; Colombo, Sri Lanka; Dhaka, Bangladesh; Yangon, Myanmar; Bangkok, Thailand; Kuala Lumpur, Malaysia; Singapore; Jakarta, Indonesia; Hanoi, Vietnam; Beijing and Hong Kong, the People's Republic of China; Seoul, the People's Republic of Korea; Manila, the Philippines, and Sapporo and Tokyo, Japan. The potential water resources were estimated by subtracting the actual evaporation from the amount of rainfall. The actual evaporation was estimated using the potential evaporation obtained by Hamon's equation which requires the air temperature and the possible hours of sunshine. When the results of Hamon's and Penman's evaporation equations were compared, a considerable error appeared in the low latitude region. The estimation using Hamon's equation was corrected with the linear regression line of Hamon's and Penman's equations. A classification of the land cover was carried out based on satellite photographs of the target cities, and the volume of surface runoff for each city was obtained using the runoff ratios which depended on the land cover. As a result, the potential water resources in the above mega cities in Asia were found to be greater than the world average. However, the actual water resources which are available for one person to use are probably very limited.

  • PDF

Simulation of Soil Hydrological Components in Chuncheon over 30 years Using E-DiGOR Model

  • Aydin, Mehmet;Jung, Yeong-Sang;Yang, Jae-E.;Lee, Hyun-Il;Kim, Kyung-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.484-491
    • /
    • 2012
  • The hydrological components of a sandy loam soil of nearly level in Chuncheon over 30 years were computed using the E-DiGOR model. Daily simulations were carried out for each year during the period of 1980 to 2009 using standard climate data. Reference evapotranspiration and potential soil evaporation based on Penman-Montheith model were higher during May to August because of the higher atmospheric evaporative demand. Actual soil evaporation was mainly found to be a function of the amount and timing of rainfall, and presumably soil wetness in addition to atmospheric demand. Drainage was affected by rainfall and increased with a higher amount of precipitation and soil water content. Excess drainage occurred throughout rainy months (from July to September), with a peak in July. Therefore, leaching may be a serious problem in the soils all through these months. The 30-year average annual reference evapotranspiration and potential soil evaporation were 951.5 mm and 714.2 mm, respectively. The actual evaporation from bare soil varied between 396.9-528.4 mm and showed comparatively lesser inter-annual variations than drainage. Annual drainage rates below 120 cm soil depth ranged from 477.8 to 1565.9 mm. The long-term mean annual drainage-loss was approximately two times higher than actual soil evaporation.

A Statistical Study Evaporation tn DAEGU Area (대구지방의 증발량에 대한 통계학적 연구)

  • 김영기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.4
    • /
    • pp.3160-3169
    • /
    • 1973
  • Rainfall, evaporation, and permeability of water are the most important factors in determining the demand of water. The Daegu area has only a meteorologi observatory and there is not sufficient data for adapting the advanced method for derivation of the estimated of evaporation in the Daegu area. However, by using available data, the writer devoted his great effort in deriving the most reasonable formula applicable to the Daegu area and it is adaptable for various purposes such as industry and estimation of groundwater etc. The data used in this study was the monthly amount of evaporation of the Daegu area for the past 13 years(1960 to 1970). A year can be divided into two groups by relative degrees of evaporation in this area: the first group (less evaporation) is January, February, March, October, November, and December, and the second (more evaporation) is April, May, June, July, August, and September. The amount of evaporation of the two groups were statistically treated by the theory of probability for derivation of estimated formula of evaporation. The formula derved is believed to fully consider. The characteristic hydrological environment of this area as the following shows: log(x+3)=0.8963+0.1125$\xi$..........(4, 5, 6, 7, 8, 9 month) log(x-0.7)=0.2051+0.3023$\xi$..........(1, 2, 3, 10, 11, 12 month) This study obtained the above formula of probability of the monthly evaporation of this area by using the relation: $F_(x)=\frac{1}{{\surd}{\pi}}\int\limits_{-\infty}^{\xi}e^{-\xi2}d{\xi}\;{\xi}=alog_{\alpha}({\frac{x_0+b'}{x_0+b})\;(-b<x<{\infty})$ $$log(x_0+b)=0.80961$ $$\frac{1}{a}=\sqrt{\frac{2N}{N-1}}\;Sx=0.1125$$ $$b=\frac{1}{m}\sum\limits_{i-I}^{m}b_s=3.14$$ $$S_x=\sqrt{\frac{1}{N}\sum\limits_{i-I}^{N}\{log(x_i+b)\}^2-\{log(x_i+b)\}^2}=0.0791$$ (4, 5, 6, 7, 8, 9 month) This formula may be advantageously applied to estimation of evaporation in the Daegu area. Notation for general terms has been denoted by following: $W_(x)$: probability of occurance. $$W_(x)=\int_x^{\infty}f(x)dx$$ P : probability $$P=\frac{N!}{t!(N-t)}{F_i^{N-{\pi}}(1-F_i)^l$$ $$F_{\eta}:\; Thomas\;plot\;F_{\eta}=(1-\frac{n}{N+1})$$ $X_l\;X_i$: maximun, minimum value of total number of sample size(other notation for general terms was used as needed)

  • PDF

Performance Enhancement of Solar-Driven Steam Generator by Local Wettability Control (태양열 활용 증발기의 성능 향상을 위한 국소적 젖음성 제어에 관한 실험적 연구)

  • Choi, Jinwook;Seo, Yongwon;Mo, Hyeong-Uk;Kim, Seolha
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.255-259
    • /
    • 2022
  • Solar membrane steam generation is a very promising technology that can harvest purified water from seawater or wastewater during the current danger of running out of pure water. However, solar Membrane steam generation had direct contact with water, making it difficult to increase the efficient amount of evaporation. Here, we propose solar membrane steam generator composed of polydimethylsiloxane (PDMS) and graphene oxide (GO) and improved evaporation through wettability control in part throughout the water-absorbing membrane. Wettability control has shown significant improvements in thermal localization and temperature rise in the area of heat exchange with sunlight. The evaporator has an evaporation rate of 1.54 kg m-2 h-1 under 1 sun irradiation. The results showed that Solar membrane steam evaporation can effectively harvest pure water through an increase in evaporation.