• Title/Summary/Keyword: Amount of slump

Search Result 142, Processing Time 0.022 seconds

A Study on the Flowing Characteristic of Concrete with Copper Smelting Slag (동제련 슬래그를 사용한 콘크리트의 경시별 유동특성에 관한 실험적 연구)

  • 김정욱;지석원;이세현;전현규;유택동;서치호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.319-324
    • /
    • 2001
  • Recently new practical use way of industry product is required. In this study, to find flowing property of slump, unit weight, the air amount, compressive strength etc. Compressive strength 240, 270kgf/$cm^{2}$, slump 8$\pm$2.5(I), 152$\pm$.5(II)cm, mixing ratio of copper smelting slag decided by 0, 25, 50, 75, 100% gradually, The result of this study was follows ; 1. Unit weight increased 2.2%~4.4% according as mixing ratio of copper smelting slag increases. 2. Slump increased about 2~5% as the mixing ratio increased gradually 3. Compressive strength was increased about 4~28% in copper smelting slag mixing ratio 25~50% and 8~20% decreased more than mixing ratio 75%.

  • PDF

A Study on the Optimum Amount of Waste Foundry Sand and Flyash in Concrete (폐주물사와 플라이애쉬의 적정 사용량에 관한 연구)

  • Yang, Joo-Kyoung;Moon, Young-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.1
    • /
    • pp.43-47
    • /
    • 2009
  • The most of waste foundry sands(WFS) have been discarded. It is very urgent for our country to make a study on recycling of WFS. The one of recycling method of WFS is using them as fine aggregate for concrete. This study provided the optimum amount of WFS and flyash when WFS and flyash were used together in concrete. The concrete made with 60% WFS fine aggregate replacement showed higher compressive strength, splitting tensile strength and modulus of elasticity than normal concrete. In the case that the flyash and WFS are replaced together, the compressive strength and splitting tensile strength were improved at flyash replacement ratio $10%{\sim}20%$ and WFS replacement ratio $40%{\sim}60%$. The increase of WFS and flyash replacement led lower air content. While the increase of WFS replacement led lower slump, the increase of flyash replacement led higher slump.

A Study on the Chemical Admixture According to Target Slump Value by Crushed Sand Replacement Rate (부순모래 치환율별 목표슬럼프 값 고정에 따른 화학혼화제의 특성에 관한 연구)

  • Ryu, Hyun-Gi;Cho, Myeong-Ken
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.4
    • /
    • pp.87-93
    • /
    • 2008
  • With an increased use of alternative aggregate due to exhaustion of quality aggregate resources, the amount of used crushed aggregates have been increased and as a result, development of admixture materials has also been improved and its amount of use is increasing from day to day in order to secure quality in concrete. Accordingly, the purpose of this study is to make concrete of good quality by using chemical admixture developed in this study by replacement rate of fine aggregate. At first, susceptibility, compressive strength ratio and length change ratio in both fresh and hardened concrete were evaluated according to corresponding regulation. As for high performance related regulation, APC NO.3 and PC series were going to rule, and as for AE agent regulation, replacement ratio of fine aggregate of high performance chemical admixture was 10:0 and other chemical admixture met quality regulation for AE agent.

Physical and Mechanical Properties of Blast Furnace Cement Concrete with Polypropylene Fiber (폴리프로필렌 섬유를 보강한 고로시멘트 콘크리트의 물리·역학적 특성)

  • Jun, Hyung Soon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.151-158
    • /
    • 2012
  • This study will not only prove experimental dynamic properties which are classified to slump, compressed strength, bending strength and toughness index blast-furnace cement concrete with polypropylene (PP) fiber that refer properties and volume of it, but also establish a basic data in order to use PP fiber reinforced blast-furnace cement concrete. The slump didn't changed by PP fiber volume $5kgf/m^3$ because of flexibility of fiber in despite of loose mixing. The reason why the slump decreased steadily by PP fiber volume $3kgf/m^3$ was rising contact surface of water. The compressed strength indicated a range of 19.49~26.32 MPa. The tensile strength indicated a range of 2.10~2.44 MPa. The bending strength was stronger about 3~16 % in case of mixing with PP fiber volume than normal concrete. The flexure strength indicated a range of 4.30~4.83 MPa. The toughness indicated a range of $0{\sim}19.88N{\cdot}mm$ and was stronger about 6.7 times in case of PP fiber volume $9kg/m^3$ than PP fiber volume $1kg/m^3$. The pavement with PP fiber volume over such a fixed quantity in the roads of a respectable amount load can have a effect to prevent not only resistance against clack but also rip off failures.

The effects of limestone powder and fly ash as an addition on fresh, elastic, inelastic and strength properties of self-compacting concrete

  • Hilmioglu, Hayati;Sengul, Cengiz;Ozkul, M. Hulusi
    • Advances in concrete construction
    • /
    • v.14 no.2
    • /
    • pp.93-102
    • /
    • 2022
  • In this study, limestone powder (LS) and fly ash (FA) were used as powder materials in self-compacting concrete (SCC) in increasing quantities in addition to cement, so that the two powders commonly used in the production of SCC could be compared in the same study. Considering the reduction of the maximum aggregate size in SCC, 10 mm or 16 mm was selected as the coarse aggregate size. The properties of fresh concrete were determined by slump flow (including T500 time), V-funnel and J-ring experiments. The experimental results showed that as the amount of both LS and FA increased, the slump flow also increased. The increase in powder material had a negative effect on V-funnel flow times, causing it to increase; however, the increase in FA concretes was smaller compared to LS ones. The increase in the powder content reduced the amount of blockage in the J-ring test for both aggregate sizes. As the hardened concrete properties, the compressive and splitting strengths as well as the modulus of elasticity were determined. Longitudinal and transverse deformations were measured by attaching a special frame to the cylindrical specimens and the values of Poisson's ratio, initiation and critical stresses were obtained. Despite having a similar W/C ratio, all SCC exhibited higher compressive strength than NVC. Compressive strength increased with increasing powder content for both LS and FA; however, the increase of the FA was higher than the LS due to the pozzolanic effect. SCC with a coarse aggregate size of 16 mm showed higher strength than 10 mm for both powders. Similarly, the modulus of elasticity increased with the amount of powder material. Inelastic properties, which are rarely found in the literature for SCC, were determined by measuring the initial and critical stresses. Crack formation in SCC begins under lower stresses (corresponding to lower initial stresses) than in normal concretes, while critical stresses indicate a more brittle behavior by taking higher values.

Development of an integrated machine learning model for rheological behaviours and compressive strength prediction of self-compacting concrete incorporating environmental-friendly materials

  • Pouryan Hadi;KhodaBandehLou Ashkan;Hamidi Peyman;Ashrafzadeh Fedra
    • Structural Engineering and Mechanics
    • /
    • v.86 no.2
    • /
    • pp.181-195
    • /
    • 2023
  • To predict the rheological behaviours along with the compressive strength of self-compacting concrete that incorporates environmentally friendly ingredients as cement substitutes, a comparative evaluation of machine learning methods is conducted. To model four parameters, slump flow diameter, L-box ratio, V-funnel time, as well as compressive strength at 28 days-a complete mix design dataset from available pieces of literature is gathered and used to construct the suggested machine learning standards, SVM, MARS, and Mp5-MT. Six input variables-the amount of binder, the percentage of SCMs, the proportion of water to the binder, the amount of fine and coarse aggregates, and the amount of superplasticizer are grouped in a particular pattern. For optimizing the hyper-parameters of the MARS model with the lowest possible prediction error, a gravitational search algorithm (GSA) is required. In terms of the correlation coefficient for modelling slump flow diameter, L-box ratio, V-funnel duration, and compressive strength, the prediction results showed that MARS combined with GSA could improve the accuracy of the solo MARS model with 1.35%, 11.1%, 2.3%, as well as 1.07%. By contrast, Mp5-MT often demonstrates greater identification capability and more accurate prediction in comparison to MARS-GSA, and it may be regarded as an efficient approach to forecasting the rheological behaviors and compressive strength of SCC in infrastructure practice.

Analysis of Influential Factors on Compressive Strength of Concrete Specimens Obtained from a Drilled Shaft Construction Site (현장타설말뚝 콘크리트 공시체 압축강도 데이터 분석을 통한 강도 영향인자 분석)

  • Lee, Kicheol;Chung, Moonkyung;Kim, So Yeun;Kim, Dongwook
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.10
    • /
    • pp.37-47
    • /
    • 2015
  • Recently, the quality of drilled shafts concrete has been improved significantly due to the improved concrete performance, upgraded concrete materials, and better management of on-site constructions. Despite the development, current conventional quality management on concrete constructions is still used without any criticism. In this study, compressive strength test results of more than 200 concrete specimens after 7 and 28 days of curing were collected from one site at Songdo area of Incheon. The concrete specimens were prepared from the concrete with aggregate maximum dimensions of 25 mm, target compressive strength of 40 MPa, and slump of 180 mm. Influential factors including concrete temperature, air temperature, amount of slump, amount of air, amount of salinity on concrete specimen were also examined. The database was established from collected information and statistical analyses were performed. Analyzed results confirm that "the difference between concrete temperature and air temperature" has the largest impact on the compressive strengths of specimens at the durations of 7 and 28 days.

Mechanical Properties of Polypropylene Fiber mixed in Concrete and Granite Soil Concrete (폴리프로필렌섬유를 혼입한 콘크리트와 화강토콘크리트의 역학적 특성)

  • Jun, Hyung-Soon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.6
    • /
    • pp.120-126
    • /
    • 2018
  • The study conducted an experiment in which residual aggregate and polypropylene fibers are mixed in concrete, and an experiment in which granite and polypropylene fibers are mixed. Two types of experiments, in particular, changed the amount of polypropylene fibers, and examined the mechanical properties of slump, compressive strength, tensile strength and the like. To establish a light and easy-to-use material for landscape construction and packaging material development by comparing two kinds of experimental results, comparing and analyzing residual aggregate as experimental materials and materials using granite soil to prevent partial destruction due to cracks in drying shrinkage. The more the amount of the PP fibers increases in concrete, the more the volume of the PP fibers increases, the less the slump is determined. As a result of the compressive strength, the cast-down earth concrete is measured to be about 59% to 71% of the concrete strength. As the amount of PP fibers mixed in increased, the compression strength showed a relative decrease. As a result of tensile strength, it is found that the granite concrete is about 68-67% of concrete tensile strength. It was found that the compression strength decreased as the amount of PP fibers mixed in concrete or fire-gant concrete was increased. Then, when polypropylene fibers are mixed in the concrete and the concrete, it is found that tensile strength is increased. By analyzing these results, a fixed amount of PP fiber is mixed in the concrete mixed with the granite soil and utilized for various structures in the field of landscape construction or materials related to packaging, the prevention and improvement effect of the structure is determined.

Strength Properties and Determination Method of Mix Proportion Factor of Latex Modified Concrete (라텍스개질 콘크리트의(LMC)의 강도특성 및 배합인자 결정방법)

  • Park, Sung-Ki;Won, Jong-Pil;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.5
    • /
    • pp.39-50
    • /
    • 2008
  • This study are decided the mix proportion method of latex modified concrete for agricultural concrete structures from the results of workability and strength test with mix proportion factor. For mix proportion factor, this study are selected the water-cement ratio, unit cement amount and latex content. Also, this study were performed the slump, compressive strength test and microstructure analysis using the scanning electron microscope(SEM). The strength and slump of LMC are dependent with unit cement amount, latex content, and water-cement ratio. Especially, the strength of LMC are not controlled by single mix proportion factor but effected by combined mix proportion factor. Microstructure investigation are showed the LMC are reduced the internal pore volume and enhanced the transition zone between cement paste and aggregate interface. This effect get by consist of latex films in the concrete. Also, this study were recommended the mix proportion method for LMC. These mix proportions method are estimated the mix design for satisfied the target performance which are applied the agricultural concrete structure.

The Development of Melamine Superplasticizer Using Antiwashout Underwater Concrete (수중불분리콘크리트에 사용되는 멜라민유동화제 개발)

  • Kang, Hyun-Ju;Lee, Kyung-Hee;Cho, In-Sung;Park, Soon-Eui
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.963-969
    • /
    • 2002
  • In this studies, methly celluloes was used as antiwashout admixture and when considering the physical properties and economical efficiencies of Underwater Concrete as the results of making an experiencing slump flow, flow loss, setting time, suspension and pH also compressive strength and underwater/an air compressive strength ratio according to the adding amount changes 5, 7, 9, 11 kg/$m^3$ to Underwater Concrete of melamine superplasticizer, the using amount of melamine superplasticizer in Underwater Concrete approximately represents 9 kg/$m^3$.