• Title/Summary/Keyword: Amount of settlement

Search Result 221, Processing Time 0.025 seconds

Finite Element Analysis for Investigating the Behavior of Gravel Compaction Pile Composite Ground (GCP 복합지반의 거동분석을 위한 유한요소해석)

  • Kim, Gyeong-eop;Park, Kyung-Ho;Kim, Ho-Yeon;Kim, Daehyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.3
    • /
    • pp.19-32
    • /
    • 2018
  • Gravel Compaction Pile (GCP) method is currently being designed and constructed by empirical method because quantitative design method has not been developed, leading to various types of and frequent destruction such as expansion failure and shear failure and difficulties in establishing clear cause and developing measure to prevent destruction. In addition, despite the difference with domestic construction equipment and material characteristics, the methods applied to the overseas ground is applied to the domestic as it is, leading to remarkable difference between applied values and measured values in variables such as bearing capacity and the settlement amount. The purpose of this study was, therefore, to propose a reasonable and safe design method of GCP method by analyzing the settlement and stress behavior characteristics according to ground strength change under GCP method applied to domestic clay ground. For the purpose, settlement amount of composite ground, stress concentration ratio, and maximum horizontal displacement and expected location of GCP were analyzed using ABAQUS. The results of analysis showed that the settlement and Settlement reduction rate of composite ground decreased by more than 60% under replacement ratio of 30% or more, that the maximum horizontal displacement of GCP occurred at the depth 2.6 times pile diameter, and that the difference in horizontal displacement is slight under replacement ratio of 30%.

Design of Rigid Sewer Pipe by Bearing Capacity and Settlement (지지력과 침하량을 고려한 강성관용 하수관거 설계)

  • Kim, Seong-Kyum;Oh, Seung-Sik;Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.137-143
    • /
    • 2020
  • This study proposes an improvement plan for the evaluation of the bearing capacity and settlement of sewer pipe bases for the improvement of design methods for determining pipe breakage. Under the same conditions, the safety of crushed stone foundation was the lowest. Concrete VR pipe and prefabricated plastic foundations were found to be safe at most excavation depths. The bearing capacity of a rigid pipe foundation was determined by the shape of the foundation, soil conditions, and groundwater, irrespective of the type of foundation. As the depth of the excavation increases, the settlement tends to decrease immediately, and as the diameter of the pipe increases, the settlement tends to increase immediately at the same depth. It is thus reasonable to consider the bearing capacity and the instant settlement amount to solve the problems caused by the settlement of a rigid sewer pipe.

The Settlement Characteristics of Waste Landfill Site by Consolidation Test (압밀시험에 의한 쓰레기매립지의 침하특성)

  • Shin, Bang-Woog;Lee, Bing-Jik;Bae, Woo-Seok;Lee, Jong-Kyu;Ahn, Byung-Chul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.1 no.1
    • /
    • pp.35-42
    • /
    • 2000
  • The settlement characteristics of waste landfill site must be considered in the design of sanitary landfill as well as in the course of the rehabilitation of the landfill site. Among prediction methods for settlement of landfill site, especially Gibson and Lo model and Power Creep Law have been successfully applied to the landfill site where the amount of settlement was large and the secondary settlement was obvious. Therefore, the effects of organic content on the model parameter values utilized in both Gibson Lo model and Power Creep Law were studied by using a large consolidation testing apparatus. The organic content is each 20%, 40%, 60% of total volume and consolidation load is $0.1{\sim}1.6kg/cm^2$. The main results can be summarized as follows: (1) The reference compressibility of Power Creep Law is decreased according to the increments of consolidation load: (2) The field measurement is more similar to the Power Creep Law than the Gibson and Lo model.

  • PDF

A Numerical Study on the Effects on Consolidation Settlement Behavior due to Uncertainty of Compression Index (압축지수의 불확실성이 압밀침하 거동에 미치는 영향에 대한 수치적 평가)

  • Byun, Yoseph;Kim, Kwangyoon;Lee, Changki;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.11
    • /
    • pp.43-50
    • /
    • 2012
  • In this research, the value of consolidation index was investigated. The range of the investigated standard deviation was analyzed and the deviation based settlement was calculated. Also, the compression index, which is the effect of the uncertainty in the ground was analyzed using the flimsy ground construction method. The settlement behavior in each embankment compaction stage was analyzed by applying the precompression load method, drainage expediting method, and displacement method through numerical analysis. In addition to the above, the settlement behavior was studied by analyzing the Piled Raft method which is stable for long term settlement. As a result, the final settlement amount based on average analysis results was that the settlement based on each of the average interpretation value, mean value of the maximum and minimum value and average compression index was different. The result of the comparison shows the difference in variation coefficient by the difference in time. Amongst them, the Piled Raft method shows the most consistent variation coefficient regardless of time and it also was least affected by the compression index of uncertainty.

An Experimental Study for Estimation of Compression Settlement on Embankment Material Under Self-weight (성토체 압축침하량 산정에 관한 연구)

  • Kwon, Jeongeun;Noh, Ilkwon;Jung, Juyoung;Im, Jongchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.4
    • /
    • pp.33-40
    • /
    • 2009
  • In earthwork projects, the designer considers cut and fill balance for minimizing earthwork which may significantly decrease construction costs. Despite carrying out considerable earthwork design, the decrease in volume of earth occurs in construction sites because of embankment settlement under self-weight, consolidation settlement of soft ground, cavity filling and soil loss due to rainfall-runoff. To reflect the decrease in volume of earth, the specifications for road construction just give shrinkage factors in embankment for soils without consideration of embankment settlement under self-weight. In this study, the computational method is used to estimate the amount of embankment settlement under self-weight developed by Iseda (1972) and Ishii (1976). This research shows that the total compression settlements are between 3 to 10 percent of embankment height according to the property of embankment material and embankment height. As a result, the designer should consider the compression settlement on embankment material under selt-weight.

  • PDF

Prediction of Residual Settlement of Ground Improved by Vertical Drains Using the Elasto-Viscous Consolidation Model (I) - Verification of the Applicability of Theory - (탄-점성 압밀이론에 의한 버티칼 드레인 타설지반의 잔류침하 예측 (I) -이론의 적용성 검증)

  • Baek, Won-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.69-77
    • /
    • 2007
  • In this study, the consolidation behavior of clayey ground improved by vertical drain method was analyzed by the finite difference method based on the three-dimensional elasto-viscous consolidation theory, which can express the behavior of the secondary consolidation without considering the distinction of the normally consolidated and overconsolidated states. And the applicability of the elasto-viscous consolidation theory was discussed by comparing with the test results obtained from the model test of ground improved by vertical drain system. From these results, it is found that the amount of the settlement when the excess pore water pressure almost dissipated in the clay ground with vertical drains became smaller than that of the one-dimensional condition, and then the amount and rate of the residual settlement at secondary consolidation process became larger than those of the one-dimensional condition. finally, the effect of soil parameter on behavior of consolidation process was investigated by the results of a series of numerical analysis for the normalized and overconsoldiated states.

Vacuum Consolidation on Highly Compressible Soil (고 압축성 토질에서의 진공압밀)

  • 정연인
    • Geotechnical Engineering
    • /
    • v.11 no.4
    • /
    • pp.13-24
    • /
    • 1995
  • Laboratory testings, consisting of soil properties testing and vacuum consolidation testing with and without vertical wick drain, were carried out on five different types of soil to determine soil properties and relationship between settlement and time. One dimensional consolidation teat was performed to determine if this test could be used for predicting the behavior of soils during vacuum consolidation. From the results of this study, the one dimensional consolidation test does not appear to be suitable for predicting the rate of vacuum consolidation without wick drain. However, one dimensional consolidation test reasonably predicts the total settlement of vacuum consolidation without wick drain. In vacuum consolidation, the amount of the settlement for silty soils were more or less the same for both cases, with wick drain and without wick drain, even if the time required for consolidation was considerably different. And, strategic placement of wick drain ensures moisture content and the value of the density are similar throughout the soil sample. However, the presence of wick drain for clay Boils increased the amount of settlement and also shortened the time required for consolidation.

  • PDF

Consolidation Behavior of SCP Improved Ground at Pusan New Port Part 1-1 (부산신항 1-1단계 SCP 개량지반 압밀 특성)

  • JUNG JONG-BUM;YANG SANG-YONG;BYUN JUN-GI
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.51-56
    • /
    • 2004
  • The sand compaction pile (SCP) method, which forms a composite ground by driving sand piles into clay deposit, is the most commonly used soil improvement techniques in many countries for more than 30 years. Installation of sand compaction piles reduces the amount of consolidation settlement and increases the bearing capacity of soft clay deposit. In this paper, field survey conducted to investigated the consolidation behavior of the composite ground improved by SCPs. It is suggested that the measured consolidation velocity is later than design theory, however measured consolidation settlement is higher than design theory.

  • PDF

Post-Liquefaction Induced Ground Settlement by Dissipation of Porewater Pressure under Drained Condition (지반 배수조건을 고려한 액상화 이후 과잉간극수압 소산에 따른 지반의 침하)

  • Yun, Seong-Kyu;Kim, Donghwan;Yang, Yeongchan;Kang, Gichun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.6
    • /
    • pp.5-16
    • /
    • 2022
  • In the case of domestic seismic design, deformation of structures and ground is reviewed through undrained condition analysis and applied to design and maintenance. However, when the ground undergoes dissipation after liquefaction due to a dynamic load such as an earthquake, additional displacement occurs and greater damage occurs. Therefore, it is necessary to additionally analyze the drained conditions, It is necessary to grasp the exact ground behavior such as calculating and reviewing the amount of subsidence of the ground that has undergone the loss process after an earthquake and apply it to design and maintenance together. Therefore, in this study, numerical analysis was performed assuming undrained and drained conditions by dividing pure sandy soil into loose soil with Dr=30% and high-density soil with Dr=70%. In particular, when a dynamic load such as an earthquake is applied, considering the drained conditions of the ground, the settlement amount and the pore water pressure ratio of loose and dense ground are compared, This study focused on comparative analysis of settlement amount and pore water pressure ratio in the process of ground loss after an earthquake. As a result, the amount of subsidence during the dissipation process was 30 to 60 times greater than that of the earthquake.

The Allowable Displacement Limit on the Approach Slab for a Railway Bridge with Ballastless Track (콘크리트궤도부설 교량의 접속슬래브 허용변위한도에 관한 연구)

  • Choi, Jin-Yu;Yang, Shin-Chu;Yoo, Jin-Young;Cho, Hyun-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1149-1155
    • /
    • 2007
  • The transition area between a bridge and an earthwork is one of the weakest area of track because of the track geometry deterioration caused unequal settlement of backfill of abutment. In case of a ballastless track, the approach slab is installed to prevent the phenomenon. But, if there is occurred the inclined displacement on the approach slab by a settlement of the foundation or formation, the track is also under the inclined displacement. And this defect causes reducing the running stability of a vehicle, the riding comfort of passengers, and the deteriorations of track by excessive impact subjected to the track. In this study, parametric studies were performed to know what is the allowable displacement limit on the approach slab to avoid such a bad effect. The length and amount of unequal settlement of the approach slab was adopted as parameter for numerical analysis. And car body accelerations, variations of wheel force and rail stress and uplift force induced on a fastener clip are investigated. From the result, resonable settlement limits of an approach slab according to slab length was suggested.

  • PDF