• Title/Summary/Keyword: Amount of premixed combustion

Search Result 48, Processing Time 0.018 seconds

Characteristics of Multi staged Combustion on a Double-cone Partial Premixed Nozzle (이중 콘형 부분 예혼합 GT 노즐의 다단 연소특성)

  • Kim, Han Seok;Cho, Ju Hyeong;Kim, Min Kuk;Hwang, Jeongjae;Lee, Won June
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • Experimental investigations were conducted to understand the multi-staged combustion characteristics of a swirl-stabilized double cone premixed burner nozzle used for industrial gas turbines for power generation. Multi-staged combustion is implemented by injecting the fuel through the existing manifold of the side slots as well as through the apex of the cone with two fuel injection angles which are slanted or axial. NOx and CO emissions, and wall temperature distributions were measured for various fuel distributions and operating conditions. Results show that NOx emissions are decreased when the fuel distribution to the apex is 3% of the total amount of fuel, which is due to more uniform fuel distribution inside the nozzle, hence less hot spots at the flame. NOx emissions are rather increased when the fuel distribution to the apex is 8% of the total amount of fuel for axial fuel injection by occurrence of flash back in premixing zone of burner.

Nozzle configurations for partially premixed interacting jet flame to enhance blowout limits (다수 부분 예혼합 화염의 화염날림 유속 확대)

  • Lee, Byeong-Jun;Kim, Jin-Hyun
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.79-84
    • /
    • 2004
  • For the non-premixed interacting jet flames, it has been reported that if eight small nozzles are arranged along the circle of 40 $^{\sim}$ 72 times the diameter of single jet, the flames are not extinguished over 2oom/s. In this research, experiments were extended to the partially premixed cases to reduce both flame temperature and NOx emission. Nine nozzles were used- eight was evenly located along the perimeter of the imaginary circle and one at the geometric centre. The space between nozzles, S, the equivalence ratio, ${\Phi}$, the exit velocity and the role of the jet from the centre nozzle were considered. Normally, flame was lifted and flame base was located inside the imaginary circle made by the nozzle. As nozzles went away from each other, blowout velocity increased and then decreased. The maximum blowout velocity diminished with the addition of air to the fuel stream. When the fuel and/or oxidizer were not fed through the centre nozzle, the maximum blowout velocity obtained by varying Sand ${\Phi}$ was around 160m/s. Optimum nozzle separation distance at which peak blowout velocity obtained also decreased with ${\Phi}$ decrease. Flame base became leaner as approaching to the blowout. It seemed that lots of air was supplied to the flame stabilizing region by the entrainment and partially premixing. To approve this idea and to enhance the blowout velocity, fuel was supplied to the centre region. With the small amount of fuel through the centre nozzle, partially premixed flame could be sustained till sonic velocities. It seemed that the stabilizing mechanism in partially premixed interacting flame was different from that of non-premixed case because one was stabilized by the fuel supply through the centre nozzle but the other destabilized.

  • PDF

A Study of Numerical Analysis on Mixed Combustion Characteristics in a Gasoline Direct Injection Engine with Premixed Hydrogen (수소 예혼합 가솔린 직접분사 엔진의 혼소특성에 관한 수치해석 연구)

  • Bae, Jaeok;Choi, Minsu;Suh, Hyunuk;Jeon, Chunghwan
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.6
    • /
    • pp.524-534
    • /
    • 2013
  • Gasoline direct injection(GDI) engine has a high thermal efficiency, but it has a problem to increase carbon emissions such as soot and $CO_x$. In this study, the objective is to analyze numerically a problem for adding the hydrogen during the intake stroke so as to reduce the injected amount of gasoline in GDI engines. For selection of the base model, the cylinder pressure of simulation is matched to experimental data. The numerical analysis are carried out by a CFD model with the hydrogen addition of 2%, 3% and 4% on the volume basis. In the case of 3% hydrogen addition, the injected gasoline amount is only changed to match the maximum pressure of simulation to that of the base model for additional study. It is found that the combustion temperature and pressure increase with the hydrogen addition. And NO emission also increases because of the higher combustion temperature. $CO_x$ emissions, however, are reduced due to the decrease of injected gasoline amount. Also, as the injected gasoline amount is reduced for the same hydrogen addition ratio, the gross indicated work is no significant, But NO and $CO_x$ emissions are considerably decreased. On the order hand, $CO_x$ emissions of two cases are more decreased and their gross indicated works are higher obtained than those of the base model.

Initiation of Gaseous Premixed Flame (예혼합기체 연료의 화염생성에 관한 연구)

  • 백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.135-139
    • /
    • 1989
  • The flame initiation of an infinite fuel system exposed to a planar ignition kernel has been investigated numerically. The aim has been to promote an understanding of the flame initiation by using the simplest mathematical formulation which retains the essential physical features. It has been found that there exists a minimum ignition energy below which a combustion wave cannot be initiated. For a fixed value of Lewis number, the same flame progation velocity has been obtained irregardless of the amount ignition energy supplied. Furthermore, for a fixed energy input there is a maximum Lewis number over which the flame cannot be initiated.

Prediction of Nitric Oxide Formation Using a Two-Zone Model in a DI Diesel Engine (2영역 모델을 이용한 EGR사용 직접분사식 디젤엔진의 Nox생성예측)

  • Kim, Cheol-Hwan;Lee, Jin-Ho;Chun, Kwang-Min;Lee, Kyo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.390-401
    • /
    • 2000
  • In this study, numerical calculation is carried out to investigate the influence of injection timing, fuel amount, intake $O_2$ concentration, and EGR on Nitric Oxide(NO) formation using a two-zone model in a diesel engine. Results can be summarized as follows. The NO formation is very sensitive to the burned gas temperature, so multi-zone model must be applied to combustion process to predict the burned gas temperature exactly. Since the burned gas temperature increases rapidly during the premixed combustion, most NO is formed within 20 crank angle degrees after ignition. As the injection timing is retarded, the combustion occurs later in the expansion process which causes the decrease of burned gas temperature and, as a result, NO formation decrease. The increase of fuel amount results in the increase of earlier formation of NO in the engine. As the intake $O_2$ concentration increases, the maximum pressure and burned gas temperature increase due to activate combustion. And, [O] mole fraction of equilibrium combustion products also increase. Therefore NO exponentially increases. If exhaust gas is recirculated, the burned gas temperature decreases which results in NO decrease. If exhaust gas is cooled, more NO can be decreased.

Effects of H2O Addition in Downstream Interaction between H2-Air and CO-Air Premixed Flames (H2-공기와 CO-공기 예혼합 화염 사이의 후류상호작용에 있어서 H2O 첨가 효과)

  • Park, Jeong;Kwon, Oh Boong;Kim, Tae Hyung;Park, Jong Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.1
    • /
    • pp.6-14
    • /
    • 2015
  • Numerical study was conducted to clarify effects of added $H_2O$ for the downstream interaction between $H_2$-air and CO-air premixed flames in counterflow configuration. The reaction mechanism adopted was Davis model which had been known to be well in agreement with reliable experimental data. The results showed that both lean and rich flammable limits were reduced in increase of strain rate. The most discernible difference between the two with and without having $H_2O$ and/or $H_2$ addition into $H_2$-air and CO-air premixtures was two flammable islands for the former and one island for the latter at high strain flame conditions. Even a small amount of $H_2$, in which $H_2$-air premixed flame cannot be sustained by itself, participates in CO oxidation, thereby altering the CO-oxidation reaction path from the main reaction route $CO+O_2{\rightarrow}CO_2+O$ with a very long chemical time in CO-air flame to the OH-related reaction routes including $CO+OH{\rightarrow}CO_2+H$ with very short chemical times. This intrinsic nature alters flame stability maps appreciably. The results also showed that chemical effects of added $H_2O$ help lean flames at relatively low strain rate be sustained, and suppress the flame stabilization at high strain rates.

Effects of CO2 Addition in Downstream Interaction between 2-Air and CO-Air Premixed Flames (H2-공기와 CO-공기 예혼합화염 사이의 후류상호작용에 있어서 CO2 첨가 효과)

  • Keel, Sang In;Park, Jeong
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.4
    • /
    • pp.29-36
    • /
    • 2013
  • Numerical study was conducted to clarify effects of added $CO_2$ for the downstream interaction between $H_2$-air and CO-air premixed flames in counterflow configuration. The reaction mechanism adopted was Davis model which had been known to be well in agreement with reliable experimental data. The results showed that both lean and rich flammable limits were reduced. The most discernible difference between the two with and without having $CO_2$ addition into $H_2$-air and CO-air premixtures was two flammable islands for the former and one island for the latter at high strain flame conditions. Even a small amount of $H_2$, in which $H_2$-air premixed flame cannot be sustained by itself, participates in CO oxidation, thereby altering the CO-oxidation reaction path from the main reaction route $CO+O_2{\rightarrow}CO_2+O$ with a very long chemical time in CO-air flame to the (H, O, OH)-related reaction routes including $CO+OH{\rightarrow}CO_2+H$ with relatively short chemical times. This intrinsic nature alters flame stability maps appreciably. The results also showed that chemical effects of added $CO_2$ suppressed flame stabilization. Particularly this phenomenon was appreciable at flame conditions which lean and rich extinction boundary was merged. The detailed discussion of chemical effects of added $CO_2$ was addressed to the present downstream interaction.

Research on the Combustion and Emission Characteristics of the DME/Diesel Dual-fuel Engine (DME/Diesel 듀얼 퓨얼 엔진의 연소 및 배출 특성에 관한 연구)

  • Lim, Ock-Taeck;Pyo, Young-Duck;Lee, Young-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.29-34
    • /
    • 2011
  • This study investigates the potential of DME/Diesel dual fuel engine for reducing emissions with same power. Dual fuel engine controls the combustion using two different fuels, DME and diesel with different auto-ignition timings. In the previous work, the caracteristics of combustion and emissions under single cylinder engine and ignition is done by compression ignition. Pre-mixture is formed by injecting low-pressure DME into an intake manifold and high-pressure fuel (diesel or DME) is injected directly into the cylinder. Both direct diesel injection and port fuel injection reduced the significant amount of Smoke, CO and NOx in the homogeneous charge compression ignition engine due to present of oxygen in DME. In addition, when injecting DME directly in cylinder with port DME injection, there is no changes in emissions and energy consumption rate even operated by homogeneous charge compression ignition.

Numerical Study of Combustion Characteristics Inside a Micro-Tube Combustor (마이크로 튜브 연소기의 연소특성에 대한 수치해석 연구)

  • Oh Chang Bo;Choi Byung Il;Han Yong Shik;Kim Myung Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1352-1359
    • /
    • 2005
  • Unsteady simulations were performed to investigate the flame structure and the dynamic behavior of a premixed flame exposed to the wall heat loss. A 3-step global reaction mechanism was adopted in this study. Simulations were performed for two tube combustors with inner diameters($d_i$) of 1mm and 4mm. The material of tube combustor was assumed to be a Silicon Nitride($Si_{3}N_4$). The heat loss from the outer tube wall was controlled by adjusting the amount of convective and radiative heat loss. A conical premixed flame could be stabilized inside a tube of $d_i=4mm$. The flame stability inside a tube of $d_i=4mm$ combustor was not much sensitive to the amount of heat loss. In case of a tube of $d_i=1mm$, an oscillating flame was observed in very low heat loss condition and a flame could not be sustained in realistic heat loss condition.

Measurements of Spray Characteristics According to Nozzle Property in Dual Fuel Engine with a Mechanical Fuel Pump (기계식 연료펌프를 사용하는 혼소엔진에서 노즐특성에 따른 경유 분사특성 측정)

  • Cho, S.H.;Yoo, S.H.;Lee, B.H.;Kim, D.H.;Lee, D.Y.
    • Journal of ILASS-Korea
    • /
    • v.17 no.2
    • /
    • pp.94-99
    • /
    • 2012
  • The characteristics of spray behavior and injected amount were studied with two types of nozzles for using in a compression ignition engine with dual fuel technology for construction machines. A penetration length of spray tends to shorten due to a decrease of injected amount of a diesel fuel with dual fuel engine application. In order to ignite the gaseous fuel premixed with air during intake process, a diesel fuel, which was compression ignited, needs to penetrate somehow similar depth compared with the case of a diesel fuel-only-injection. In this work, a nozzle with reduced hole diameter and increased number of holes was tested and demonstrated that, compared to diesel 100% case, its penetration lengths are comparable to 74% and 79%, respectively, of those of 100% and 50% supply of a diesel fuel with the baseline nozzle that has four holes and 30.4% increased diameter. This will presumably enhancement the combustion in a dual fuel engine. A design suggestion was also made in this work to achieve similar penetration length of spray with diesel 100% case to prevent combustion from being deteriorated in a dual fuel engine.