• Title/Summary/Keyword: Amount of air

Search Result 2,643, Processing Time 0.031 seconds

NOx Formation and Flame Structure in $CH_4/Air-CO_2$ Counterflow Diffusion Flames ($CH_4/Air-CO_2$ 대향류 확산화염의 NOx 생성 특성 및 화염구조)

  • Han, J.W.;Lee, S.R.;Lee, C.E.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.949-955
    • /
    • 2000
  • Numerical study with detailed chemistry has been conducted to investigate the NOx formation and structure in $CH_4/Air-CO_2$ counterflow diffusion flames. The importance of radiation effect is identified and the role of $CO_2$ addition is addressed to thermal and chemical reaction effects, which can be precisely specified through the introduction of an imaginary species. Also NO separation technique is utilized to distinguish the contribution of thermal and prompt NO formation mechanisms. The results are as follows : The radiation effect is dominant at low strain rates and it is intensified by $CO_2$ addition. Thermal effect mainly contributes to the changes in flame structure and the amount of NO formation but the chemical reaction effect also cannot be neglected. It is noted that flame structure is changed considerably due to the addition of $CO_2$ in such a manner that the path of methane oxidation prefers to take $CH_4 {\rightarrow}CH_3{\rightarrow}C_2H_6{\rightarrow}C_2H_5$ instead of $CH_4 {\rightarrow}CH_3{\rightarrow}CH_2{\rightarrow}CH$. At low strain rate(a=10) the reduction of thermal NO is dominant with respect to reduction rate, but that of prompt NO is dominant with respect to total amount.

  • PDF

A Study on the Theory Analysis and Engine Test Performance by a High Expansion Diesel Engine into Intake-Exhaust Consideration (흡.배기를 고려한 고팽창 저속 디젤 기관의 이론 해석과 기관 성능에 대한 연구)

  • Jang, Tae-Ik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1141-1148
    • /
    • 2008
  • One of the methods to increase the efficiency of an engine is to expand pressures obtained from combustions equal to the pressure of atmosphere as much as possible and then convert thermal energy into mechanical energy also as much as possible. In this research, the Diesel cycle was thermodynamically interpreted to evaluate the possibility of high efficiency by converting Diesel engines to the Atkinson cycle, and general cycle features were analyzed after comparing these two cycles. In the case of fuel air the Diesel-Atkinson cycle considering intake and exhaust similar to real cycles, the value of thermal efficiency and average effective pressure increased, though their values were smaller than those of standard air amount cycle, when expansion compression ratio increased. When normal Diesel engines of which compression stroke and expansion stroke are all the same, was converted to the Atkinson cycle by changing the time of intake value close, combustion pressure reduced due to reduced expansion compression ratio and intake air amount due to decreased effective cycle volume.

A Study on the Surface Corona Discharge in the Gas with different Mixing Ratio of Air to $SF_6$ ($SF_6$와 공기의 혼합기체중에서의 연면 코로나 방전)

  • 전춘생;조기선;우호환
    • 전기의세계
    • /
    • v.26 no.6
    • /
    • pp.78-85
    • /
    • 1977
  • This paper studies flashover voltage and surface corona loss of A.C and D.C in the mixed gas of air and SF$_{6}$ for solid insulators P.V.C, arcylic, glass and bakelite in two cases. In one case, those solids are covered with transformer oil and the other case, those solids are not covered with it. 1) The flashover voltage for each solids in SF$_{6}$ is more than three times compared with that in the air. The flashover voltage for P.V.C is the highest and then arcylic, glass, bakelite in a decreasing order. 2) The more the amount of SF$_{6}$ in the mixing ratio, the less corona loss. The P.V.C shows the least amount of corona loss and the bakelite the largest. 3) Compared with the corona loss of positive polarity and the negative polarity, the former has less corona loss than the latter. 4) The more the number of flashover discharge, the less insulation of each solids, but in case of bakelite, insulation almost vanishes after a couple of discharge. 5) When each insulator is covered with transformer oil, the flashover voltage generally increases and the corona loss decreases.eases.

  • PDF

Control of Environments in Greenhouse Using Programmable Logic Controller (PLC를 이용한 온실의 환경제어)

  • 김동억;조한근;김형준
    • Journal of Biosystems Engineering
    • /
    • v.23 no.6
    • /
    • pp.599-606
    • /
    • 1998
  • This study was carried out to develop the control system with PLC and its operating software and to investigate its control ability of greenhouse environments. Two experimental greenhouses were controlled by PLC and ON/OFF controller, respectively. In greenhouse controlled by PLC, target values of air temperature, relative humidity and $CO_2$ concentration were automatically changed. In warm-water heating, the variation of air temperature was reduced to $\pm$ $0.6^{\circ}C$ by the method of proportional-integration(PI) control with an inverter. In ventilation, the variation of air temperature was reduced, since windows open and close with multistage by mutual relation formula among the target, indoor, and outdoor temperature. Relative humidity at daytime was maintained with range of 35% to 55% by PLC controlled fogger. $CO_2$ concentration was automatically controlled from 300 to 800 $\mu$molㆍ$mol^{-1}$ according to amount of solar radiation. The suppling amount and frequency of nutrient solution were controlled by total integrated solar radiation. Difference in the yield of cucumber in the greenhouse controlled by PLC and by ON/OFF controller was not significant at the 5% level.

  • PDF

Determination of the repair grout volume to fill voids in external post-tensioned tendons

  • Im, Seok Been;Hurlebaus, Stefan
    • Structural Engineering and Mechanics
    • /
    • v.42 no.1
    • /
    • pp.25-38
    • /
    • 2012
  • Recently, investigated failures of external post-tensioned (PT) tendons have called attention to the corrosion of strands in PT bridges, and the prevention of ongoing corrosion is required to secure their structural integrity. Since voids inside ducts can be a source for the ingress of water or deleterious chemicals, the vacuum grouting (VG) method and a volumeter for estimating amount of repair grouts were employed to fill voided ducts. However, the VG method is expensive and time-consuming for infield application because it requires an air-tight condition of entire ducts. Thus, latest research assessed three different repair grouting methods, and the pressure vacuum grouting (PVG) method was recommended in the field because it showed good filling capability in voided ducts and did not require an air-tight condition. Thus, a new method is required to estimate the volume of repair grouts because the PVG method is not applied in air-tight ducts. This research assesses the relationship between voided areas on ducts identified with soundings and required grout volume for repair using experimental results. The results show that the proposed equations and assumptions for estimating repair grout volume provide a sufficient amount of repair grouts for filling voided ducts.

Characteristics on Spray Cooling Performance on the Micro-Porous Coated Surfaces (마이크로다공성 발열체 표면에서의 액체분무 냉각성능 특성)

  • Kim Yoon-Ho;Choi Chi-Hwan;Lee Kyu-Jung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.304-311
    • /
    • 2006
  • Experiments on evaporative spray cooling on the square plate heaters with plain or micro-porous coated surfaces were performed in this study. Micro-porous coated surfaces were made by using DOM [Diamond particle, Omegabond 101, Methyl-Ethyl-Keton] method. In case of purely air-jet cooling, the micro-porous coating doesn't affect the cooling capacity. In spray cooling three different flow patterns (complete wetting, evaporative wetting, dryout) are observed on both plain and micro-porous coated surfaces. The effects of various operating conditions, such as water flow rate, particle size, and coating thickness were investigated on the micro-porous coated surfaces. It is found that the level of surface wetting is an important factor to determine the performance of spray cooling. It depends on the balance between absorbed liquid amount by capillary force over porosity and the evaporative amount. The micro-porous coated surface has largest cooling capacity, especially in the evaporative wetting zone. It is found that the effects of liquid flow rate and coating thickness are significant in evaporative wetting zone, but are not in complete wetting and dryout zones.

The Characteristics of Air Temperature according to the Location of Automatic Weather System (AWS 설치장소에 따른 기온 특성)

  • Joo, Hyong-Don;Lee, Mi-Ja;Ham, In-Wha
    • Atmosphere
    • /
    • v.15 no.3
    • /
    • pp.179-186
    • /
    • 2005
  • Due to several difficulties, a number of Automatic Weather Systems (AWS) operated by Korea Meteorological Administration (KMA) are located on the rooftop so that the forming of standard observation environment to obtain the accuracy is needed. Therefore, the air temperature of AWSs on the synthetic lawn and the concrete of the rooftop is compared with the standard observation temperature. The hourly mean temperature is obtained by monthly and hourly mean value and the difference of temperature is calculated according to the location, the weather phenomenon, and cloud amount. The maximum and the minimum temperatures are compared by the conditions, such as cloud amount, the existence of precipitation or not. Consequently, the temperature on the synthetic lawn is higher than it on the concrete so that it is difficult to obtain same effect from ASOS, on the contrary the installation of AWS on the synthetic lawn seem to be inadequate due to heat or cold source of the building.

자성나노유체의 기-액 2상유동을 이용한 에너지 하베스팅에 관한 고찰

  • Lee, Won-Ho;Kim, Cheol-Su;Lee, Won-Seop;Lee, Jong-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.381.2-381.2
    • /
    • 2016
  • It was known conceptually that ferrofluid or air driven flows induced by waste heat energy could generate electric power in surrounding windings by changing the magnetic flux with time through the colis. In the last decade, a ferrohydrodynamics energy harvesting system based on magnetorheology has been investigated experimentally and numerically. However, it was focused on the movement of air droplets or nanoparticles in the ferrofluid, therefore the electric power generated in the device was not enough to use practically. In this study, we developed the electrical generation concept based on magnetic particle flows for harvesting large amount of electric power and conducted measurements and computations for verifying the concept of electrical generation. In order to obtain a significant amount of electrical energy by using magnetic particle flows, it was critical to control the magnetization direction of magnetic nanoparticles in the fluid by a permanent magnet and to change the magnetic flux with time by air bubbles when the fluid flows in a millimeter-sized channel passed through surrounding windings.

  • PDF

Hypopharyngeal Wall Exposure within the Surgical Field : The Role of Axial Rotation of the Thyroid Cartilage during Anterior Cervical Surgery

  • Choi, Byung-Kwan;Cho, Won-Ho;Choi, Chang-Hwa;Song, Geun-Sung;Kim, Choon-Grak;Kim, Hak-Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.48 no.5
    • /
    • pp.406-411
    • /
    • 2010
  • Objective : Esophageal/hypopharyngeal injury can be a disastrous complication of anterior cervical surgery. The amount of hypopharyngeal wall exposure within the surgical field has not been studied. The objective of this study is to evaluate the chance of hypopharyngeal wall exposure by measuring the amount of axial rotation of the thyroid cartilage (ARTC) and posterior projection of the hypopharynx (PPH). Methods : The study was prospectively designed using intraoperative ultrasonography. We measured the amount of ARTC in 27 cases. The amount of posterior projection of the hypopharynx (PPH) also was measured on pre-operative CT and compared at three different levels; the superior border of the thyroid cartilage (SBTC), cricoarytenoid joint and tip of inferior horn of the thyroid cartilage (TIHTC). The presence of air density was also checked on the same levels. Results : The angle of ARTC ranged from $-6.9^{\circ}$ to $29.7^{\circ}$, with no statistical difference between the upper and lower cervical group. The amount of PPH was increased caudally. Air densities were observed in 26 cases at the SBTC, but none at the TIHTC. Conclusion : Within the confines of the thyroid cartilage, surgeons are required to pay more attention to the status of hypopharynx/esophagus near the inferior horn of the thyroid cartilage. The hypopharynx/esophagus at the TIHTC is more likely to be exposed than at the upper and middle part of the thyroid cartilage, which may increase the risk of injury by pressure. Surgeons should be aware of the fact that the visceral component at C6-T1 surgeries also rotates as much as when the thyroid cartilage is engaged with a retractor. The esophagus at lower cervical levels warrants more careful retraction because it is not protected by the thyroid cartilage.

An Evaluation of Aerobic Exercise Wear Mobility as a Basic Criterion for Universal Design (에어로빅복의 유니버설 디자인을 위한 동작 적합성 평가)

  • Sohn, Ju-Hee;Choi, Jeong-Wha;Kang, Tae-Jin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.3 s.162
    • /
    • pp.343-350
    • /
    • 2007
  • This study compared and studied the clothing mobility of two types of aerobic clothes - those made of currently popular stretch materials and those made of new stretch materials that were specially developed for this study. The focus of the comparison was on the range of joint movement during activity, and the physiological burden imposed on the body by the clothes. In total, 18 experiments were carried out under controlled conditions in an artificial climatic chamber with a temperature of $25{\pm}1^{\circ}C$, air humidity of $60{\pm}5^{\circ}C$ and negligible air movement. Each exercise program consisted of a 30-minute of aerobic workout and a 20-minute rest following the exercise. Measurements were taken to determine the following: physiological reactions (whole-body and local sweat rates), subjective sensations(of temperature, humidity, comfort, tightness, and clothing wetness), joint angle(measured with a goniometer), and so on. The results of the study us as follows: Material B excels in clothing mobility. Material C excels in sweat absorbency and drying speed. Material A was found to be the hottest material, while material C was found to be slightly hot through the analysis of the change in pre- and post-exercise bodyweight(= amount of sweat). Regarding the amount of evaporated sweat, material A>material C>material B. Material B produced the smallest amount of evaporated sweat. The wider the range of joint movement, the smaller the amount of sweat and the lower the average skin temperature.