• Title/Summary/Keyword: Amorphous polymer

Search Result 258, Processing Time 0.029 seconds

Shrinkage in Injection molded Part for Operational Conditions and Resins (성형조건과 수지의 종류에 따른 사출 성형품의 성형 수축)

  • 모정혁;김현진;류민영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.363-370
    • /
    • 2003
  • Shrinkage of injection molded parts is different form operational conditions of injection molding such as injection temperature, injection pressure and mold temperature, and mold design such as gate size. It is also various for different resins which have crystalline structure or not. In this study part shrinkage was investigated for various operational condition and resins; PBT for crystalline polymer, and PC and PMMA for amorphous polymer was used in experiment. Crystalline polymer shows higher part shrinkage by about three times than amorphous polymer. Part shrinkage increased as injection temperature and mold temperature increased and injection pressure decreased. Part shrinkage decreased as gate size increased since the pressure delivery is mush easier for large gate size. Part shrinkage according to the gate location was that the position in the part with close to the gate showed large shrinkage and this phenomenon might be occurred by residual stress.

  • PDF

Synthesis of Ion Conducting Polymer Having Low Temperature Characteristics: II. Synthesis and Characterization of Amorphous Polyester (저온특성을 갖는 이온전도성 고분자의 합성 연구: II. 비정형 폴리에스테르의 합성 및 분석)

  • 황승식;조창기
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.281-286
    • /
    • 2000
  • A series of amorphous polyesters were synthesized from amorphous polyether and sebacoyl chloride. The structure and competition of the obtained aliphatic polyester were confirmed by $^1$H-NMR and FT-IR. The number average molecular weights (M$_{n}$) of the obtained polymer were ranging from 8000 ~ 15000. These polyesters showed no crystallinity and their glass transition temperatures (T$_{g}$) were around -77$^{\circ}C$. For comparison, aliphatic polyesters were also synthesized from poly(ethylene glycol) (PEG) with M$_{n}$ of 200, 400, and 1000. As the M$_{n}$ of PEG increased, the melting point of the obtained polyester increased, and the crystallinity of the obtained polyester increased showing 8.8%, 16.2%, and 46.7%, respectively.ively.y.

  • PDF

The Foaming Characteristics of Microcellular Processing with Polypropylene in Semicrystalline States (결정성 수지의 발포특성)

  • Lee, Bo-Hyoung;Cha, Sung-Woon;Yoon, Jae-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1828-1833
    • /
    • 2003
  • In a foaming process of microcellular plastics (MCPs) with a batch process, amorphous plastics and crystalline plastics have different characteristics for a foaming temperature. It is known that a foaming of amorphous plastics occurs at the temperature above a glass transition temperature, however, it is discovered that crystalline plastics do not take place above a glass transition temperature without exception, and even though the foaming occurs, it does not in all the range. In this research, to measure foaming temperature of crystalline polymer, a foaming experiment was performed using one of the typical crystalline polymer, polypropylene. To analyze whether the foaming occurs both at amorphous and crystalline fields, SEM was applied

  • PDF

Characteristics of Amorphous IZO Anode Films for Polymer OLEDs Grown by Box Cathode Sputtering (박스 캐소드 스퍼터로 성장시킨 고분자 유기발광소자용 비정질 IZO 애노드 박막의 특성)

  • Moon Jong-Min;Bae Jung-Hyeok;Jung Soon-Wook;Kim Han-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.552-557
    • /
    • 2006
  • Electrical, optical, surface, and structural properties of amorphous indium-zinc-oxide (a-IZO) grown by box cathode sputtering (BCS) were compared with crystalline indium-tin-oxide (c-ITO) anode films grown by conventional DC sputtering (DCS). Although x-ray diffraction plot of BCS-grown IZO film shows amorphous structure, the optical and electrical properties of a-IZO is comparable to those of c-ITO film. In particular, BCS-grown IZO films shows very smooth surface without defects such as pin hole and cracks because most of the energy of the sputtered atoms was confined in high density plasma region in box cathode gun. Furthermore polymer organic light emitting diodes (POLED) with the a-IZO anode film shows better electrical properties than that of POLED with the c-ITO anode film due to high work function and smooth surface of a-IZO. This suggested that BCS-grown a-IZO film is promising anode materials substituting conventional c-ITO anode in OLED and flexible displays.

Comparison and Characterization of Silodosin-loaded Solid Dispersions Prepared by Various Solid Dispersion Preparation Methods (다양한 고체분산체 제조방법으로 제조한 실로도신 함유 고체분산체의 비교 및 특성분석)

  • Su Man Lee;Da Young Song;Kyeong Soo Kim
    • Journal of Powder Materials
    • /
    • v.31 no.3
    • /
    • pp.263-271
    • /
    • 2024
  • This study focused on improving the solubility of silodosin, a drug poorly soluble in water, by utilizing solid dispersions. Three types of dispersions were examined and compared against the drug powder: surface-attached (SA), solvent-wetted (SW), and solvent-evaporated (SE). Polyvinyl alcohol (PVA) was identified as the most effective polymer in enhancing solubility. These dispersions were prepared using spray-drying techniques with silodosin and PVA as the polymer, employing solvents such as water, ethanol, and a water-acetone mix. The physicochemical properties and solubility of the dispersions were evaluated. The surface-attached dispersions featured the polymer on a crystalline drug surface, the solvent-wetted dispersions had the amorphous drug on the polymer, and the solvent-evaporated dispersions produced nearly round particles with both components amorphous. Testing revealed that the order of improved solubility was: solvent-evaporated, solvent-wetted, and surface-attached. The results demonstrated that the preparation method of the solid dispersions significantly impacted their physicochemical properties and solubility enhancement.

Preparation and Characterization of Solid Dispersion of Ipriflavone with Polyvinylpyrrolidone

  • Jeong, Je-Kyo;Kim, Jung-Hoon;Khang, Gil-Son;Rhee, John M.;Lee, Hai-Bang
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.3
    • /
    • pp.173-179
    • /
    • 2002
  • Solid dispersions of ipriflavone with PVP were prepared by a spray-drying method in order to improve the bioavailability. They were measured with scanning electron microscopy, differential scanning calorimetry, x-ray powder diffraction, and Fourier transform infrared spectroscopy to evaluate the physicochemical interaction between ipriflavone and PVP and study the correlation between these physicochemical characteristics and bioavailability. Ipriflavone exhibited crystallinity, whereas PVP was almost amorphous. The area of the endotherm $({\Delta}H)$ of freezer milled ipriflavone, freezer milled ipriflavone physically mixed with freezer milled PVP, and physically mixed ipriflavone with PVP was almost the same, whereas ${\Delta}H$ of the solid dispersed ipriflavone with PVP was much smaller than that of the other preparation types. Also, the crystallinity and the crystal size of ipriflavone in the solid dispersed ipriflavone with PVP were much smaller than those of the other preparation types. From the in vivo test, the AUC of the solid dispersed ipriflavone with PVP was approximately 10 times higher than that of the physically mixed ipriflavone with PVP. The solid dispersion using the spray-drying method with a water-soluble polymer, PVP, may be effective for the improvement of the bioavailability.

Effect of pyrolysis temperature and pressing load on the densification of amorphous silicon carbide block (열분해 온도와 성형압력의 영향에 따른 비정질 탄화규소 블록의 치밀화)

  • Joo, Young Jun;Joo, Sang Hyun;Cho, Kwang Youn
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.6
    • /
    • pp.271-276
    • /
    • 2020
  • In this study, an amorphous SiC block was manufactured using polycarbosilane (PCS), an organosilicon polymer. The dense SiC blocks were easily fabricated in various shapes via pyrolysis at 1100℃, 1200℃, 1300℃, 1400℃ after manufacturing a PCS molded body using cured PCS powder. Physical and chemical properties were analyzed using a thermogravimetric analyzer (TGA), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), and universal testing machine (UTM). The prepared SiC block was decomposed into SiO and CO gas as the temperature increased, and β-SiC crystal grains were grown in an amorphous structure. In addition, the density and flexural strength were the highest at 1.9038 g/㎤ and 6.189 MPa of SiC prepared at 1100℃. The manufactured amorphous silicon carbide block is expected to be applicable to other fields, such as the previously reported microwave assisted heating element.