• Title/Summary/Keyword: Ammunition Storage

Search Result 35, Processing Time 0.024 seconds

Priority Selection of Firearms and Ammunition for the Local Reserve Forces using Dynamic Programming (동적계획법에 기반한 지역예비군 총기, 탄약 분배 우선순위 선정에 관한 연구)

  • Cho, Sangjoon;Ma, Jungmok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.67-74
    • /
    • 2020
  • One of the missions of active-duty units in charge of managing reserve forces is providing combat supplies to reserve forces to exercise their combat capabilities quickly when declaring a mobilization order. Rear area active-duty units must support large local reserve forces. On the other hand, military units have difficulties due to a lack of forces and the storage of large quantities of firearms and ammunition. For this reason, local reserve forces should move to an integrated storing place and receive their firearms and ammunition. The existing distribution plan (existing plan) is a first-in-first-out plan that can produce inconsistent distribution orders. The inconsistent distribution orders can increase the complete distribution time, which will affect the combat power of local reserve forces. Therefore, firearms and ammunition should be distributed quickly. Accordingly, this paper proposes the priority selection of firearms and ammunition for local reserve forces with a minimum complete distribution time using Dynamic Programming. To verify the proposed model, the existing plan was compared with the proposed model using real data, and the result showed that the proposed model outperformed the existing plan.

A Study on the Shelf-Life Prediction of the Domestic Single Base Propellants Ammunition : Based on 105mm High Explosive Propellants (국내 단기추진제 탄약의 저장수명 예측에 관한 연구 : 105미리 고폭탄 추진체를 중심으로)

  • Choi, Myoungjin;Park, Hyungju;Yang, Jaekyung;Baek, Janghyun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.3
    • /
    • pp.36-42
    • /
    • 2014
  • Domestic 105mm HE (High Explosive) shell is composed of three parts that are Fuze, Projectile and Propellants. Among three parts, propelling charge of propellants part consists of single base propellants. It has been known that the lifespan of single base propellants is affected by a storage period. These are because Nitrocellulose (NC) which is the main component of propelling gunpowder can be naturally decomposed to unstable substances similar with other nitric acid ester. Even though it cannot be prevented fundamentally from being disassembled, a decomposition product ($NO_2$, $NO_3$, and $HNO_3$) and tranquillizer DPA (Diphenylamine) having high reactivity are added into a propellant to restrain induction of automatic catalysis by a decomposition product. The decay rate of the tranquillizer is also affected by a production rate of the decomposition product of NC. Therefore, an accurate prediction of the Self-Life is required to ensure against risks such as explosion. Hereupon, this paper presents a new methodology to estimate the shelf-life of single base propellants using data of ASRP (Ammunition Stockpile Reliability Program) to domestic 105mm HE (propelling charge of propellants part). We selected four attributes that are inferred to have influence on distribution of the DPA amount in a propellant from the ASRP dataset through data mining processes. Then the selected attributes were used as independent variables in a regression analysis in order to estimate the shelf-life of single base propellants.

Storage Life Evaluation of a Violet Smoke Hand Grenade(KM18) using Degradation Data (열화데이터를 이용한 자색 연막수류탄(KM18)의 저장수명 평가)

  • Chang, Il-Ho;Hong, Suk-Hwan;Jang, Hyun-Jeung;Son, Young-Kap
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.215-223
    • /
    • 2012
  • A violet smoke hand grenade(KM18) is used to generate signals. The grenade is considered to fail when its smoke emission time is longer than the specified one so that its smoke concentration becomes lighter. Accelerated degradation test for the grenade was performed, and then failure in smoke emission time was reproduced from the test. Stress for the degradation test was selected as temperature/humidity from the pre-test results. Degraded data of emission time from the accelerated test were analyzed through applying a distibution-based degradation model. Then, Peck Model was applied to predict the storage life under field conditions. In addition, the predicted storage life was compared with that of ASRP(Ammunition Stockpile Reliability Program).

Design consideration and explosion safety of underground ammunition storage facilities (지하탄약고의 설계요소 및 폭발안전 연구)

  • Kim, Oon-Young;Lee, Myung-Jae;Kim, Min-Seok;Kim, Joon-Youp;Joo, Hyo-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.1
    • /
    • pp.55-70
    • /
    • 2003
  • Ammunition magazine, which is installed on the ground, has difficulty in protecting from the external attack, and accidental explosion should cause great damage to the life and property. For these reasons, it is needed to develop underground magazine that it has the advantages of safety, security and maintenance. This paper introduce the design case for blasting facilities, which should resist blasting pressure, as well as layout of underground magazine, which takes a safety for explosion and a working space of loading/unloading machine into consideration. On the layout, in case of ${\bigcirc}{\bigcirc}$ underground magazine, put three storage chambers in position almost parallel with principle stress direction, where less effected on discontinuity and hard rock area. Also, secured safe distance according to safety criteria of the Defense Ministry, and verified suitable layout by trace simulation for loading/unloading machine on working stage. Blasting design was performed on evaluation of maximum blast pressure between donar and acceptor chambers, and design condition for blast door, valve, etc. Diminution facilities against explosion, such as thrust block or debris trap, determined its size after plan in accordance with blasting criteria and calculation by structural analysis.

  • PDF

Status and Issues for Underground Space Development in Singapore (싱가포르 지하공간 개발의 현황 및 이슈)

  • Lee, Hee Suk;Zho, Yingxin
    • Tunnel and Underground Space
    • /
    • v.28 no.4
    • /
    • pp.304-324
    • /
    • 2018
  • Singapore government is strongly promoting the development and utilization of underground space in national level due to the nature of the city state which lacks the land. As well as conventional underground utilization in shallow depth such as metro and underground roads, large rock cavern utilization has been started after the successful completion of the underground ammunition depot in the rock, and Jurong Rock Cavern, the second large underground cavern project has just been completed. In this paper, after evaluating the conditions of the underground development in rock mass through the analysis of the geology of Singapore, the history and current status of underground development are examined. Several creative development plans from Singapore government such as underground reservoirs, underground automation logistics systems and underground warehouses storage etc. are introduced with technical issues. This paper also discusses the problems and issues related to the development of large underground space in rock mass in Singapore. It is expected that such active development of underground space in Singapore can give many opportunities and also challenges for rock engineering and industry in the future.

The Effect of Surface Roughness on the Trajectory of Howitzer Shell (표면 거칠기가 곡사포탄의 탄도에 미치는 영향)

  • Shin, Geonho;Cheon, Kangmin;Shin, Baekcheon;Go, Jeongil;Lee, Junhyeok;Hur, Jangwook
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.364-371
    • /
    • 2022
  • Surface state change of ammunition generated during the storage period increases the surface roughness and this affects the flight of ammunition, but there are no research results quantitatively indicating this. In this study, the drag force for each Mach number of howitzer shells was calculated through CFD to which the surface data of the howitzer shell was applied, and analysis of trajectory was performed using drag force values as an input of the 4th Runge-Kutta method, and the degree of decrease of the maximum range caused by the surface roughness of the howitzer shell was estimated. As a result, it was confirmed that the maximum range of howitzer shell with high surface roughness was 1.12 % shorter than that of howitzer shell without roughness. It was confirmed that the effect of surface roughness on the trajectory is not negligible.

A Study on the shelf-life of IR screening smoke launcher grenade (적외선 차장 연막유탄 신뢰도 및 저장수명 연구)

  • Lee, Jongchan;Lee, Junhyuk;Jung, Hyunsuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.437-445
    • /
    • 2020
  • Smoke grenades are the primary means of protection used by tanks to disrupt enemy detection systems. Such smoke grenades are a critical factor that determines the survival of tanks in the engagement of ground weapon systems, but it can only be used once. Owing to its destructive property, the performance and safety of the smoke grenade cannot be confirmed prior to use. Therefore, the reliability of smoke grenades can be evaluated through various tests during the storage period. This paper presents the results of estimating the reliability and shelf life of IR screening smoke grenade launchers based on the result of the Ammunition Stockpile Reliability Program conducted in 2019. Among the smoke grenade launcher lots currently stored, 16 lots and samples were selected for each year of manufacture and tested. The reliability and shelf life were estimated by examining the number of defects and the change in quality characteristics of each test item. The results of this study can be used to assess the reliability of the smoke grenade launchers and to improve the quality of manufacturing sites.

A Study on the Estimation of Shelf-life for 155mm propelling charge KM4A2 using ASRP's data (ASRP자료를 이용한 155MM 추진장약 KM4A2 저장수명 추정 연구)

  • Yoon, Keunsig;Park, Sangwon
    • Journal of Korean Society for Quality Management
    • /
    • v.42 no.3
    • /
    • pp.291-300
    • /
    • 2014
  • Purpose: The purpose of this study is to provide a statistical method from the data of ASRP's results and to apply to the reliability assessment of 155mm propelling charge, KM4A2. Methods: The accumulated data through ASRP for 155mm propelling charge were analyzed using regression analysis and MINITAB reliability analysis. The analysis methods used for this study were applied to statistical data types such as continuous data, binominal data. Results: The results of this study are as follows; The failure of 155mm propelling charge is mainly due to the broken charge bag, the decline of stabilizer content. The shelf-life(B5) regarding broken charge bag is 21.1years. The stabilizer content decrease with 0.0227%/year and safety storage period of propellant is 34.6years. Conclusion: The shelf-life of 155mm propelling charge determined by charge bag is estimated 21.1years.

Influence of Projectile Surface Defects on the Trajectory (탄체 외형결함이 탄도에 미치는 영향)

  • Kim, Ki-Su;Shin, Choon-Sik;Yoon, Sung-Min;Park, Chang-Kyu;Kang, Kyeong-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.279-282
    • /
    • 2011
  • Projectile can be damaged during the storage and handling. Maximum range calculation of the ammunition was performed on the assumption that each projectiles have 1.5mm/3.3mm axisymetric dent on the surface. Drag coefficient for trajectory calculation was delivered from CFD using commercial software FLUENT. In the result of CFD, damaged projectiles those have 1.5mm/3.3mm axisymetric dent have similar drag coefficient compare with normal projectile in the region of subsonic. But, in supersonic region, drag coefficient was increased 3%, 9% each in average. In the result of trajectory calculation, Maximum rage was decreased 1%, 3% each.

  • PDF

Some characteristics of an interior explosion within a room without venting

  • Feldgun, V.R.;Karinski, Y.S.;Yankelevsky, D.Z.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.5
    • /
    • pp.633-649
    • /
    • 2011
  • The paper presents a study aimed at understanding some characteristics of an interior explosion within a room with limited or no venting. The explosion may occur in ammunition storage or result from a terrorist action or from a warhead that had penetrated into this room. The study includes numerical simulations of the problem and analytical derivations. Different types of analysis (1-D, 2-D and 3-D analysis) were performed for a room with rigid walls and the results were analyzed. For the 3D problem the effect of the charge size and its location within the room was investigated and a new insight regarding the pressure distribution on the interior wall as function of these parameters has been gained. The numerical analyses were carried out using the Eulerian multi-material approach. Further, an approximate analytical formula to predict the residual internal pressure was developed. The formula is based on the conservation law of total energy and its implementation yields very good agreement with the results obtained numerically using the complete statement of the problem for a wide range of explosive weights and room sizes that is expressed through a non-dimensional parameter. This new formula is superior to existing literature recommendations and compares considerably better with the above numerical results.