• Title/Summary/Keyword: Ammonium-N

Search Result 868, Processing Time 0.023 seconds

The Effects of Ammonium Citrate and Ammonium Succinate on the Growth of Cells and Nitrogen Absorption in Korean Ginseng Suspension Cultures (고려인삼(Panax ginseng C.A. Meyer) 배양세포의 생육 및 질소 흡수에 미치는 Ammonium Citrate와 Ammonium Succinate의 영향)

  • 김홍성;김명원;소상섭;강영희
    • Journal of Plant Biology
    • /
    • v.24 no.1
    • /
    • pp.13-19
    • /
    • 1981
  • In order to investigate the effects of ammonium citrate and ammonium succinate on the growth and absorption of nitrogen compounds supplied in the medium, Korean ginseng (Panax ginseng C. A. Meyer) calli were suspension cultured in MS medium with various concentrations of ammonium citrate and ammonium succinate. When Korean ginseng calli were cultured with 10 mM ammonium citrate, 10 mM ammonium succinate, and 10 mM ammonium nitrate (control) in MS media as the nitrogen sources, the growth, $NO_3$-N absorption and total nitrogen content of the Korean ginseng cells were greatest in the ammonium citrate and ammonium succinate concentrations. When Korean ginseng calli were cultured with 5 mM ammonium citrate and 5 mM ammonium succinate, the growth and nitrogen content were superior to those of the control: however, $NO_3$-N and $NH_4$-N absorptions were similar to those of the control. In conclusion, the 10 mM ammonium citrate and 10 mM ammonium succinate may be better able to facilitate the growth and $NO_3$

  • PDF

Synthesis of Water Soluble Chitosan Derivatives with Quaternary Ammonium Salt and Their Flocculating Behavior (4차 Ammonium 기를 가진 새로운 수용성 Chitosan 유도체의 제조 및 이들의 응집거동에 관한 연구)

  • Kim, Chun-Ho;Jung, Byung-Ok;Choi, Kyu-Suk;Kim, Jae-Jin
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.118-128
    • /
    • 1996
  • N-methyl, N-butyl and N,N-dibutyl chitosan derivatives were prepared by Schiff's base formation and hydrogenation in aqueous media. Furthermore quaternization of the chitosan derivatives was performed in N-methyl-2-pyrrolidone using methyl iodide to obtain water soluble cationic polyelectrolytes. It was confirmed that O-alkylation was occured as well as selective N-alkylation in these reactions. Chitosan and chitosan derivatives with quaternary ammonium iodide showed high flocculation power as the cationic flocculant. When tested on paper mill waste water, they showed high flocculation power, independing of pH range. The flocculation power was increased as the N-alkyl chain length was increased. Among them, N-butyl dimethyl chitosan ammonium iodide showed better flocculation power than chitosan. But, N,N-dibutyl-N-methyl chitosan ammonium iodide showed less flocculation powre than chitosan itself.

  • PDF

Ammonium and Nitrate Uptake and Utilization Efficiency of Rice varieties as Affected by Different N-Concentrations

  • Choi Kyung-Jin;Swiader John M.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.1
    • /
    • pp.22-27
    • /
    • 2005
  • To find out the optimum mixture ratio of ammonium and nitrate on rice plant, 4 rice varieties were examined during 14days after transplanting in hydroponics with the different ratio of ammonium to nitrate(100 : 0, 75: 25,50: 50, 25: 75 and 0: 100). The highest N uptake from solution and the maximum plant dry weight were $60\~70\%$ ammonium and $30\~40\%$ nitrate mixture treatment both in Japonica and Tongil type rice plants. And with the same varieties N-uptake and N use-efficiency were compared between 10.0 mM and 1.0 mM nitrogen using $70\%$ ammonium and $30\%$ nitrate for 24 days after transplanting. Rice plants absorbed more nitrogen$(131\~145\%)$ in 10.0mM than 1.0mM treatment but accumulated N in rice plants were almost the same in both treatment. Among the tested rice cultivars, dry matter production and total accumulative nitrogen in rice plants were much high in Tongil type than japonica type rice cultivars. N-recovery ratios of rice plants from uptake N were $90.8-99.0\%$ in low concentration N solution(1.0 mM), but $69.4-81.7\%$ were observed in high concentration N solution(10.0 mM). It means that suppling low concentration N steadily will be better to prevent loss of N without reducing of growth in rice plants.

Nitritation Characteristics Depending on Influent Nitrogen Concentration in a Biological Aerated Filter (Biological Aerated Filter에서 유입 질소농도에 따른 아질산화 특성)

  • Yoo, Ik-Keun
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • The purpose of this study was to investigate the nitrification characteristics of biological aerated filter (BAF) packed with ceramic media, especially focusing on nitrite build-up during nitrification. When increasing the nitrogen load above $1.63kgNH_4{^+}-N/m^3{\cdot}d$, ammonium removal efficiency decreased to less than 60% and the nitrite ratio ($NO_2{^-}-N/NO_x-N$) of higher than 75% was achieved due to the inhibitory free ammonia (FA, $NH_3-N$) concentration and oxygen limitation. FA inhibition, however, is not recommended strategy to promote nitrite build-up since FA concentration in the reactor is coupled with decreased ammonium removal efficiency. Nitrite ratio in the effluent was also affected by aeration rate and influent ammonium concentration. Ammonium oxidation was enhanced at a higher aeration rate regardless of influent ammonium concentration but, the nitrite ratio was dependent on both aeration rate and influent ammonium concentration. While a higher nitrite ratio was obtained when BAFs were fed with $50mgNH_4{^+}-N/L$ of influent, the nitrite ratio significantly decreased for a greater influent concentration of $200-300mgNH_4{^+}-N/L$. Taken together, aeration rate, influent ammonium concentration and FA concentrations kept in the BAF were found to be critical variables for nitrite accumulation in the BAF system.

A Study on the Synthesis of Ammonium Dinitramide (ADN(Ammonium Dinitramide)의 합성)

  • Chung, Kyoo Hyun;Sim, Hyun Ho
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.12
    • /
    • pp.661-665
    • /
    • 1997
  • Recently ADN was disclosed to replace AP or AN as a solid oxidizer. 3-N,N-Dinitraminopropanitrile, a key intermediate in the preparation of ADN, was synthesized from bis(2-cyanoethyl)amine by the sequence: nitration of bis(2-cyanoethyl)amine followed by decyanoethylation by base and the second nitration with NO2BF4. 3-N-Nitro-bis(2-cyanoethyl)amine could also be obtained by the oxidation of the corresponding N-nitroso compound.

  • PDF

Photochemical Reactions of Saccharin-$\alpha$-Silylamine Systems. Desilylmethylation of $\alpha$-Silylamine via Single Electron Transfer Pathway

  • Ung Chan Yoon;Young Sim Koh;Hyun Jin Kim;Dong Yoon Jung;Dong Uk Kim;Sung Ju Cho;Sang Jin Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.9
    • /
    • pp.743-748
    • /
    • 1994
  • Photochemical reactions of saccharin with tertiary amines were explored. Saccharin was found to undergo an acid-base reaction with N-trimethylsilylmethyl-N,N-diethyl amine to form N-trimethylsilylmethyl-N,N-diethyl ammonium saccharin salt which is in equilibrium with free saccharin and N-trimethylsilylmethyl-N,N-diethyl amine insolution. Photoreaction of N-trimethylsilylmethyl-N,N-diethyl ammonium saccharin in $CH_3OH\;or\;CH_3CN$ results in the generation of desilylmethylated product, N,N-diethyl ammonium saccharin mainly along with benzamide. Photoreaction of N-methylsaccharin with N-trimethylsilylmethyl-N,N-diethyl amine in $CH_3OH$ leads to the production of o-(N-methylcarbamoyl)-N-ethylbenzenesulfonamid e as the major product along with N-methylbenzamide as the minor product. On the other hand, photoreaction of N,N,N-triethyl ammonium saccharin, generated from saccharin and triethylamine, produces N-methylbenzamide as the exclusive product. These photoreactions are quenched by oxygen indicating that triplets of saccharin and N-methylsaccharin are the reactive excited states. Based on the consideration of the redox potentials of saccharin and N-trimethylsilylmethyl-N,N-diethyl amine, and the nature of photoproducts, pathways involving initial triplet state single electron transfer are proposed for photoreactions of the saccharins with the ${\alpha}$-silylamine.

Piggery Waste Treatment using Partial Nitritation and Anaerobic Ammonium Oxidation (부분질산화와 혐기성 암모늄산화를 이용한 돈사폐수처리)

  • Hwang, In-Su;Min, Kyung-Sok;Lee, Young-Ok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.4
    • /
    • pp.599-604
    • /
    • 2006
  • Nitrogen removal with the combined SHARON (Single reactor system for high ammonium removal over nitrite)ANAMMOX (Anaerobic ammonium oxidation) process using the effluent of ADEPT (Anaerobic digestion elutriated phased treatment) slurry reactor with very low C/N ratio for piggery waste treatment was investigated. For the preceding SHARON reactor, ammonium nitrogen loading and removal rate were $0.97kg\;NH_4-N/m^3_{reactor}/day$ and $0.68kg\;NH_4-N/m^3_{reactor}/day$ respectively. In steady state, bicarbonate alkalinity consumption for ammonium nitrogen converted to $NO_2-N$ or $NO_3-N$ was 8.4 gram per gram ammonium nitrogen. The successive ANAMMOX reactor was fed with the effluent from SHARON reactor. The loading and removal rate of the soluble nitrogen defined as the sum total of $NH_4-N$, $NO_2-N$ and $NO_3-N$ in ANAMMOX reactor were $1.36kg\;soluble\;N/m^3_{reactor}/day$ and $0.7kg\;soluble\;N/m^3_{reactor}/day$, respectively. The average $NO_2-N/NH_4-N$ removal ratio by ANAMMOX was 2.41. Fluorescence in situ hybridization (FISH) analysis verified that Candidatus Kuenenia stuttgartiensis were dominate, which means that they played an important role of nitrogen removal in ANAMMOX reactor.

Nitrifying-genes Dynamics in the Enriched Bacterial Consortium Inoculated with Humic Soil (부식토 유래 질산화세균 consortium의 질산화 유전자 거동 특성)

  • Seo, Yoon-Joo;Lee, Yun-Yeong;Choi, Hyung-Joo;Cho, Kyung-Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.2
    • /
    • pp.296-302
    • /
    • 2019
  • In this study, the effects of ammonium concentration ($117.5-1155.0mg-N{\cdot}l^{-1}$), nitrite concentration ($0-50.0mg-N{\cdot}l^{-1}$), and temperature ($15-35^{\circ}C$) on nitrification performance and its functional genes (amoA-arc, amoA-bac, hao) in an enriched consortium inoculated with humic acid were determined. Notably, the maximum nitrification rate value was observed at $315mg-N{\cdot}l^{-1}$ of ammonium, but the highest functional gene copy numbers were obtained at $630mg-N{\cdot}l^{-1}$ of ammonium. No inhibition of the nitrification rate and functional gene copy numbers was observed via the added nitrites. The optimum temperature for maximum nitrification performance was observed to be $30^{\circ}C$. The amoA-bac copy numbers were also greater than those of amoA-arc under all test conditions. Notably, amoA-arc copy numbers and nitrification efficiency showed a positive relationship in network analysis. These results indicate that ammonium-oxidizing archaea and bacteria play important roles in the nitrification process.

Biological nitrogen removal of ammonium-rich industrial wastewater by suspended bacterial growth

  • Im, Jun-Taek;Seong, Se-Hyeon;Hwang, Seok-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.399-402
    • /
    • 2002
  • Industrial wastewater with high ammonium concentration was treated in batch biological systems which was a modified Ludzack- Ettinger process. Up to 78% conversion of $NH_4\;^+-N$ to $NO_x\;^--N$ was achieved in batch culture condition. Under anoxic condition with methanol as the carbon source, the denitrifiers decreased $NO_x\;^--N$ concentration from 608 mg/L to 5.6 mg/L in 22 d. As well as anoxic denitrification of $NO_x\;^-$ to $N_2$, dissimilatory nitrate reduction to ammonium also occurred under the condition as respiratory denitrification.

  • PDF

Effects of various Nitrite and Ammonium Nitrogen Concentrationes in the Application of ANAMMOX of Piggery Waste (돈사폐수의 ANAMMOX 적용에 있어서 아질산성 질소 및 암모니아성 질소의 농도에 따른 영향)

  • Hwang, In-Su;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.482-491
    • /
    • 2006
  • The anaerobic ammonium oxidation (ANAMMOX) from substrates with various $NO_2-N$ and $NH_4-N$ concentationes, which were generated from piggery waste was accomplished by using anaerobic granular sludge as seeding sludge. As the result of operation, when $NO_2-N/NH_4-N$ ratios of ANAMMOX influent were 0.6~1.5, $NO_2-N/NH_4-N$ removal ratios were exhibited 1.19~2.07 (average 1.63). The higher influent $NO_2-N/NH_4-N$ ratios resulted in higher $NO_2-N/NH_4-N$ removal ratios by ANAMMOX. It means that $NO_2-N$ concentration is very important factor in ANAMMOX. Specific ammonium removal rate was constantly as $0.03{\sim}0.04gNH_4-N/g$ VSS-day at $35^{\circ}C$ while it was $0.01gNH_4-N/g$ VSS-day at $20{\sim}30^{\circ}C$. Thus, in order to reduce the effluent N concentration, either an increase of ANAMMOX reactor HRT or more biomass accumulation at the optimal temperature can be considered.