• Title/Summary/Keyword: Ammonia slip

Search Result 34, Processing Time 0.022 seconds

A Study on Numerical Simulation of Gaseous Flow in SCR Catalytic Filter of Diesel Exhaust Gas Aftertreatment Device

  • Bae, Myung-Whan;Syaiful, Syaiful;Mochimaru, Yoshihiro
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.360-368
    • /
    • 2010
  • A SCR catalytic filter system is used for reducing $NO_x$ and soot emissions simultaneously from diesel combustors. The amount of ammonia (as a reducing agent) must be controlled with the amount of $NO_x$ to obtain an optimal $NO_x$ conversion. Hence, gas mixing between ammonia and exhaust gases is vital to ensure that the SCR catalyst is optimally used. If ammonia mass distribution is not uniform, slip potential will occur in rich concentration areas. At lean areas, on the other hand, the catalyst is not fully active. The better mixing is indicated by the higher uniformity of ammonia mass distribution which is necessary to be considered in SCR catalytic filter system. The ammonia mass distributions are depended on the flow field of fluids. In this study, the velocity field of gaseous flow is investigated to characterize the transport of ammonia in SCR catalytic filter system. The influence of different injection placements on the ammonia mass distribution is also discussed. The results show that the ammonia mass distribution is more uniform for the injector directed radially perpendicular to the main flow of inlet at the gravitational direction than that at the side wall for both laminar (Re = 640) and turbulent flows (Re = 4255). It is also found that the mixing index decreases as increasing the heating temperature in the case of ammonia injected at the side wall.

Combustion Characteristics of Ammonia-Gasoline Dual-Fuel System in a One liter Engine (1리터급 엔진을 이용한 암모니아-가솔린 혼소 성능 특성)

  • Jang, Jinyoung;Woo, Youngmin;Yoon, Hyung Chul;Kim, Jong-Nam;Lee, Youngjae;Kim, Jeonghwan
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.1-7
    • /
    • 2015
  • An ammonia fuel system is developed and applied to a 1 liter gasoline engine to use ammonia as primary fuel. Ammonia is injected separately into the intake manifold in liquid phase while gasoline is also injected as secondary fuel. As ammonia burns 1/6 time slower than gasoline, the spark ignition is needed to be advanced to have better combustion phasing. The test engine showed quite high variation in the power output to lead high increase in THC emission with large amount of ammonia, that is, higher than 0.7 ammonia-gasoline fuel ratios.

Numerical Investigation of the Spray Behavior and Flow Characteristics of Urea-Water Solution Injected into Diesel Exhaust Pipe (디젤 배기관에 분사된 우레아 수용액의 분무 거동 및 유동 특성에 관한 연구)

  • An, Tae Hyun;Kim, Man Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.41-48
    • /
    • 2014
  • A urea-SCR system suffers from some issues associated with the ammonia slip phenomenon, which mainly occurs because of the shortage of evaporation and thermolysis time, and this makes it difficult to achieve an uniform distribution of injected urea. A numerical study was therefore performed by changing such various parameters as installed injector angle and application and angle of mixer to enhance evaporation and the mixing of urea water solution with exhaust gases. As a result, various parameters were found to affect the evaporation and mixing characteristics between exhaust gas and urea water solution, and their optimization is required. Finally, useful guidelines were suggested to achieve the optimum design of a urea-SCR injection system for improving the DeNOx performance and reducing ammonia slip.

Influential Factors for NO_X Reduction Performance of Urea-SCR System for an In-use Medium Duty Diesel Engine (중형 운행 경유차용 Urea-SCR 시스템의 아랫첨자 $NO_X$ 저감성능에 미치는 영향인자)

  • Kim, Hong-Suk;Jeong, Young-Il;Song, Myoung-Ho;Lee, Seang-Wock;Park, Hyun-Dae;Hwang, Jae-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.154-161
    • /
    • 2009
  • This study is a part of project of urea-SCR system development for an in-use medium duty diesel engine. This study shows the effect of ammonia oxidation catalyst and SCR volume on $NO_X$ reduction performance. When AOC(Ammonia Oxidation Catalyst) is not used, the urea injection should be controlled accurately to prevent $NH_3$ slip. However, it is found that the accurate $NH_3$ slip control is not easy without AOC in real engine operating conditions, because $NH_3$ and $NO_X$ reaction characteristics change with many factors such as exhaust gas temperature and $NH_3$ absorbance on SCR. SCR volume is also one of important design parameters. This study shows that $NO_X$ reduction efficiency increases with increase of SCR volume especially at high space velocity and low exhaust gas temperature conditions. Additionally, this paper shows the emissions of EURO-2 medium duty diesel engine can be improved to the level of EURO-5 with a DPF and urea-SCR system.

Investigating the Cause of Ash Deposition and Equipment Failure in Wood Chip-Fueled Cogeneration Plant (우드칩을 연료로 하는 열병합발전소의 회분 퇴적 및 설비 고장 원인 분석)

  • Min Ji Song;Woo Cheol Kim;Heesan Kim;Jung-Gu Kim;Soo Yeol Lee
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.187-192
    • /
    • 2023
  • The use of biomass is increasing as a response to the convention on climate change. In Korea, a method applied to replace fossil fuels is using wood chips in a cogeneration plant. To remove air pollutants generated by burning wood chips, a selective denitrification facility (Selective catalytic reduction, SCR) is installed downstream. However, problems such as ash deposition and descaling of the equipment surface have been reported. The cause is thought to be unreacted ammonia slip caused by ammonia ions injected into the reducing agent and metal corrosion caused by an acidic environment. Element analysis confirmed that ash contained alkali metals and sulfur that could cause catalyst poisoning, leading to an increase in the size of ash particle and deposition. Measurement of the size of ash deposited inside the facility confirmed that the size of ash deposited on the catalyst was approximately three times larger than the size of generally formed ash. Therefore, it was concluded that a reduction in pore area of the catalyst by ash deposition on the surface of the catalyst could lead to a problem of increasing differential pressure in a denitrification facility.

A Study on Effect of Urea-SCR Aftertreatment System upon Exhaust Emissions in a LPG Steam Boiler (LPG 증기보일러의 배기 배출물에 미치는 요소-SCR 후처리 시스템의 영향에 관한 연구)

  • Bae, Myung-Whan;Song, Byung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.1-11
    • /
    • 2014
  • The aim of this study is to investigate the effect of SCR reactor on the exhaust emissions characteristics in order to develop a urea-SCR aftertreatment system for reducing $NO_x$ emissions. The experiments are conducted by using a flue tube LPG steam boiler with the urea-SCR aftertreatment system. The urea-SCR aftertreatment system utilizes the ammonia converted from 17% aqueous urea solution injected in front of SCR catalyst as a reducing agent for reducing $NO_x$ emissions. The equivalence ratio, urea injection amount, ammonia slip and $NO_x$ conversion efficiency relative to boiler load are applied to discuss the experimental results. In this experiment, the average equivalence ratio is calculated by changing only the fuel consumption rate while the intake air amount is constantly fixed at $25,957.11cm^3/sec$. The average equivalence ratios are 1.38, 1.11, 0.81 and 0.57 when boiler loads are 100, 80, 60 and 40%. The $NO_x$ conversion efficiency is raised with increasing urea injection amount, and $NH_3$ slip is also boosted at the same time. Consequently, the $NO_x$ conversion efficiency relative to boiler load should be examined in combination with urea injection amount and $NH_3$ slip. The results are calculated by 89, 85, 77 and 79% for the boiler loads of 100, 80, 60 and 40%. The appropriate amount of urea injection for the respective boiler load can be not discussed by only $NO_x$ emissions, and should be determined by considering the $NO_x$ conversion efficiency, $NH_3$ slip and reactive activation temperature simultaneously. In this study, the urea amounts of 230, 235, 233 and 231 mg/min are injected at the boiler loads of 100, 80, 60 and 40%, and the final $NH_3$ slips are measured by 8.48, 5.58, 11.97 and 11.34 ppm at the same conditions. THC emission is affected by the SCR reactor under other experimental conditions except 100% engine load, and CO emission at only 40% engine load. The rest of exhaust emissions are not affected by the SCR reactor under all experimental conditions.

A development of diesel engine De-NOx system using the selective catalytic reduction method (선택적 촉매 환원법을 이용한 디젤엔진의 De-NOx 시스템 개발에 관한 연구)

  • 정경열;김재윤;오상훈;박정일;류길수
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.187-191
    • /
    • 2001
  • In the paper, an approach to the development of the selective catalytic reduction process of NOx is presented. The reduction process can be efficiently controlled using a conventional combination of feed-forward and feed-back control structures. The aim of this paper is to test and verify an approach to the SCR process which is based on an industrial pilot plant of combustion and nitric oxide formation. The systems are based on measurements of a NOx removal ratio and the fuel flow rate, and NH$_3$slip which are usually available as a part of de-NOx control system.

  • PDF

Control of SCR System for NOx Reduction in a Refuse Incineration Plant Using Repetitive Control Method (반복제어법을 이용한 소각장 NOx 저감용 SCR 시스템의 제어)

  • 김인규;여태경;김환성;김상봉
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2762-2770
    • /
    • 2000
  • The refuse incineration plant has an important role in saving the combustion energy for local heating system. But harmful combustion gas(NOx etc.) leads to some serious environmental problem. To reduce the gas, a SCR(Selective Catalytic Reduction)system is installed and it is controlled by adjusting the flow of ammonia gas(NH3) . In this paper, we apply a repetitive control method to reduce NOx by adjusting the flow of ammonia gas for SCR system in a refuse incineration plant which is located in Haeundae, Pusan, Firstly, we analyze the inlet NOx period by FFt method, and verify its periodic variations. Secondly, we design a repetitive control system by using state space model method. Lastly, the effectiveness of repetitive control system is shown by comparing to a conventional PID control in simulation and experimental results.

A development of reactor design software for De-NOx system using the selective catalytic reduction method (선택적 촉매 환원법을 이용한 De-NOx 시스템의 반응로 설계 전산프로그램 개발)

  • 정경열;오상훈;동은석;이수태;류길수
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.187-191
    • /
    • 2002
  • The exhaust gas from electric power stations, incinerators and industrial boilers contains considerable amount of harmful nitric oxide which causes air pollution. Selective catalytic reduction system with ammonia as a reductant(NH$_{3}$ SCR) have been applied to remove NOx since 1970. it is widely accepted that the NH$_{3}$ SCR process is the best method for the removal of NOx. In this paper the design of SCR reactor based on the NOx displacement is considered and the design program of SCR reactor is developed. The newly developed design program for de-NOx system maybe used in practice.

  • PDF

Computational Fluid Dynamics(CFD) Simulation for a Pilot-scale Selective Non-catalytic Reduction(SNCR) Process Using Urea Solution (요소용액을 이용한 파일럿규모 SNCR 공정에 대한 CFD 모델링 및 모사)

  • Nguyen, Thanh D.B.;Kang, Tae-Ho;Lim, Young-Il;Kim, Seong-Joon;Eom, Won-Hyeon;Yoo, Kyung-Seun
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.922-930
    • /
    • 2008
  • The selective non-catalytic reduction(SNCR) performance is sensitive to the process parameters such as flow velocity, reaction temperature and mixing of reagent(ammonia or urea) with the flue gases. Therefore, the knowledge of the velocity field, temperature field and species concentration distribution is crucial for the design and operation of an effective SNCR injection system. In this work, a full-scale two-dimensional computational fluid dynamics(CFD)-based reacting model involving a droplet model is built and validated with the data obtained from a pilot-scale urea-based SNCR reactor installed with a 150 kW LPG burner. The kinetic mechanism with seven reactions for nitrogen oxides($NO_x$) reduction by urea-water solution is used to predict $NO_x$ reduction and ammonia slip. Using the turbulent reacting flow CFD model involving the discrete droplet phase, the CFD simulation results show maximum 20% difference from the experimental data for NO reduction. For $NH_3$ slip, the simulation results have a similar tendency with the experimental data with regard to the temperature and the normalized stoichiometric ratio(NSR).