• 제목/요약/키워드: Ammonia removal rate

검색결과 226건 처리시간 0.028초

Comparison of the Nitrification Efficiencies of Three Biofilter Media in a Freshwater System

  • Harwanto, Dicky;Oh, Sung-Yong;Jo, Jae-Yoon
    • Fisheries and Aquatic Sciences
    • /
    • 제14권4호
    • /
    • pp.363-369
    • /
    • 2011
  • Total ammonia nitrogen (TAN) removal efficiencies of a sand filter (SF), polystyrene microbead filter (PF), and Kaldnes bead filter (KF) media were evaluated under ammonia loading rates of 5, 25, and 50 g $m^{-3}day^{-1}$. The volume of each filter media tested was 7 L, and the water flow rate for all filter media was 24 L/min. The specific surface areas of the SF, PF, and KF were 7,836, 3,287, and 500 $m^2/m^3$, respectively. Sand was fluidized and the other two media were trickle filtered. The volumetric TAN removal rate increased with increasing ammonia loading rate for all filter media. Mean volumetric TAN removal rates under the ammonia loading rates of 5, 25, and 50 g $m^{-3}day^{-1}$ in SF (39.3, 168.6, and 322.7 g $m^{-3}day^{-1}$, respectively) were higher than those in PF (35.0, 157.4, and 310.5 g $m^{-3}day^{-1}$, respectively) and KF (32.1, 142.5, and 288.1 g $m^{-3}day^{-1}$, respectively). These results were related to differences in the specific surface areas of the filter media. PF was the most economic media for efficiently removing TAN.

반응조의 물리적 인자와 알칼리도가 암모니아 탈기에 미치는 영향에 관한 연구 (Effect of the Physical Parameters and Alkalinity in the Ammonia Stripping)

  • 안주석;임지혜;백예지;정태영;정형근
    • 대한환경공학회지
    • /
    • 제33권8호
    • /
    • pp.583-590
    • /
    • 2011
  • 공기 폭기법을 통해 암모니아를 제거함에 있어, 반응조의 물리적 인자(폭기 깊이, 공기 방울 크기, 표면적)와 알칼리도가 암모니아의 제거 속도에 미치는 영향을 평가하였다. 30 L/min의 공기를 6~53 cm의 폭기 깊이로 실험한 결과, 폭기 깊이는 암모니아 제거 속도에 영향을 미치지 않았다. pH가 10.0, 온도가 $30^{\circ}C$에서 암모니아의 제거 속도 상수와 표준편차는 각각 $0.175h^{-1}$, 0.004로 나타났다. 공기 방울의 크기 및 공기상과 접촉하는 수표면의 표면적은 제거 속도에 영향을 미치지 않았다. 폐수의 알칼리도는 암모니아 제거 속도에 간접적으로 영향을 미치는 것으로 나타났다. 이는 폭기에 의해 이산화탄소가 수용액에 용존되어 pH를 변화시킬 수 있기 때문인 것으로 예상된다. 매립지와 하수 종말 처리장에서 채취한 실제 폐수를 대상으로 암모니아 제거 속도를 살펴보았다. 하수 원수(pH = 7.1, alkalinity = 75 mg/L)의 경우, pH를 9.3으로 조절하여도 암모니아 제거 속도가 크게 증가하지 않았다. 그러나, 알칼리도가 높은 침출수 원수(pH = 8.0, alkalinity = 6,525 mg/L)는 초기 pH가 낮음에도 불구하고, 공기 폭기에 따른 pH 상승으로 인해 암모니아 제거 속도가 증가하는 경향을 나타냈다. 또한, 침출수 원수의 pH를 9.4로 조절한 경우, 하수 원수와 달리 공기 폭기에 따른 pH 저하가 나타나지 않아 암모니아 제거 속도가 유지 되었다.

축산 시설의 암모니아 가스 제거용 바이오 필터 시스템 개발 (Development of Biofilter System for Ammonia Removal in Livestock Facility)

  • 조성인;김명락;김유용;여운영
    • Journal of Biosystems Engineering
    • /
    • 제28권5호
    • /
    • pp.457-464
    • /
    • 2003
  • The purpose of this study was to develop a pilot scale bio-filter system removing ammonia gas with microorganisms. The system consisted of chaff(filter medium), a blower, a temperature sensor, a moisture sensor, a solenoid valve, and a heating system. Temperature and moisture contents were controlled via a PC to provide the microorganisms with proper environment. The microorganisms used in this study were Bacillius. coagulans NLRI T-6 and Pseudononas. putida NLRI S-21 of bacilli. Performance tests were performed to evaluate gas removal rate during 20 days. The result was shown that the removal rate was high in early days and gradually dropped below 90% without injecting the microbes. However, it was shown that when injecting the microbes, the removal rate was almost 100% and pH value was maintained at between 7 and 9 during the whole twenty-day period.

관형 PTFE 분리막을 이용한 막 접촉기(Membrane Contactor) 시스템에서 암모니아의 제거 특성 (Ammonia Removal Characteristics in Membrane Contactor System Using Tubular PTFE Membrane)

  • 안용태;황유훈;신항식
    • 대한환경공학회지
    • /
    • 제33권5호
    • /
    • pp.353-358
    • /
    • 2011
  • 본 연구에서는 막 접촉기에서 운전조건에 따른 암모니아 제거 특성에 대해 알아보았다. 물질 전달 계수를 이용하여 각 조건에서의 암모니아 제거효율을 정량적으로 비교하였다. PTFE 재질의 막을 이용한 본 시스템에서 빠른 시간 내에 효율적으로 암모니아 탈기가 가능하였다. 여러 가지 운전조건 항목 중에서 접촉시간과 용액의 pH가 전체 제거 효율에 가장 큰 영향을 미치는 것으로 나타났다. 다른 가압 방식의 막 분리 공정과는 다르게 본 공정에서는 유입수의 고형물질에 의해 효율이 감소하는 현상은 발견되지 않았다. 또한, 삼투 증류(osmotic distillation)에 의해 물질 전달 효율이 감소하는 현상은 흡수용액의 온도를 증가시키는 것으로 해결할 수 있었다. 본 연구에 사용한 막 접촉기 시스템은 유입수와 흡수용액(stripping solution)의 유속, 유입수의 pH 등을 최적화 할 경우에 고농도 암모니아 제거에 효과적으로 사용할 수 있을 것이라 예상된다.

BIO-CLOD를 이용한 소화슬러지의 악취저감에 대한 연구 (The Study on the Odor Removal of Digested sludge using BIO-CLOD)

  • 성일화
    • 한국산학기술학회논문지
    • /
    • 제16권12호
    • /
    • pp.8665-8672
    • /
    • 2015
  • 본 연구에서는 하수처리장의 소화슬러지(digest sludge)를 대상으로 악취제거 및 유기물제거에 대한 타당성을 검토하고자 BIO-CLOD를 넣은 반응조와 넣지 않은 반응조에 대하여 24시간, 48시간, 72시간 후 ammonia, methyl mercaptan(MMC) 및 $H_2S$에 대해서 측정하였다. BIO-CLOD를 침적시킨 반응조(BIO-CLOD)에서 24시간 내에 ammonia는 48%인 것에 비해 $H_2S$와 MMC는 98%이상의 높은 제거율을 보인 반면에 BIO-CLOD를 침적시키지 않은 반응조(Non BIO-CLOD)에서는 24시간 내에 ammonia가 45%, $H_2S$는 71%, MMC는 84%로서 악취제거 가능성을 보였다. 암모니아 농도는 시간이 지남에 따라 감소하면서 질산성질소농도는 증가하는 질산화 현상을 보였으며, 소화슬러지내의 유황계 악취성분들이 호기성 미생물들에 의해 산화 분해되어 용액 중의 황산염농도를 증가시키는 데는 BIO-CLOD효과가 있었음을 알 수 있었으며, 황산염농도증가와 대기중의 $H_2S$ 제거율간에는 상관관계가 있음을 알수 있었다. 반응조 유출수에서 유기물의 감소는 짧은 시간 내에서는 BIO-CLOD가 영향을 주지 않았으며, HRT 12시간과 HRT 24시간으로 운전하였을 때 경제적인 면에서 HRT 12시간을 고려해야 할 것으로 판단되었다.

PFR 공정의 ASBF 구조에 의한 유기물제거와 질산화의 영향에 대한 연구 (A Study on the Removal Characteristics of Dissolved Organic and Ammonia Compounds in PFR of Aerated Submerged Bio-film (ASBF) Reactor)

  • 최영익
    • 한국환경과학회지
    • /
    • 제17권11호
    • /
    • pp.1265-1271
    • /
    • 2008
  • Aerated submerged bio-film (ASBF) pilot plant has been developed. The presented studies optimized an inexpensive method of enhanced wastewater treatment. The objectives of this research were to describe pilot scale experiments for efficient removal of dissolved organic and nitrogen compounds by using ASBF reactor in plug-flow reactor (PFR) and improve understanding of dissolved organic matter and nitrogen compounds removal rates with dynamic relationships between heterotrophs and autotrophs in the fixed-film reactor. This research explores the possibility of enhancing the performance of shallow wastewater treatment lagoons through the addition of specially designed structures. This direct gas-phase contact should increase the oxygen transfer rate into the bio-film, as well as increase the micro-climate mixing of water, nutrients, and waste products into and out of the bio-film. This research also investigated the efficiency of dissolved organic matter and ammonia nitrogen removals in the ASBF. As it was anticipated, nitrification activity was highest during periods when the flow rate was lower, but it seemed to decline during times when the flow rate was highest. And ammonia nitrogen removal rates were more sensitive than dissolved organic matter removal rates when flow rates exceeded 2.2 L/min.

지렁이 분변토를 접종한 세라믹 바이오필터의 암모니아 제거에 미치는 온도의 영향 (Effect of Temperature on Removal of Ammonia in the Ceramic Biofilter Inoculated with Earthworm Casts)

  • 조경숙
    • 환경영향평가
    • /
    • 제9권1호
    • /
    • pp.39-46
    • /
    • 2000
  • Removal of ammonia using the porous ceramic biofilter inoculated with earthworm casts was characterized. By assuming a plug air flow in the biofilter and applying the Michaelis-Menten equation, the maximum removal rate of $NH_3$ was $280.7g-N{\cdot}m^{-3}{\cdot}h^{-1}$($18.0g-N{\cdot}kg^{-1}{\cdot}d^{-1}$) at $30^{\circ}C$. $NH_3$ removal rate was increased as temperature increases from $15^{\circ}C$ to $35^{\circ}C$. The maximum removal rate was $285.8g-N{\cdot}m^{-3}{\cdot}h^{-1}$($18.8g-N{\cdot}kg^{-1}{\cdot}d^{-1}$) at $35^{\circ}C$. At $15^{\circ}C$, the $NH_3$ removal rate was $122.8g-N{\cdot}m^{-3}{\cdot}h^{-1}$($8.1g-N{\cdot}kg^{-1}{\cdot}d^{-1}$). When 210 ppm $NH_3$ was supplied to the biofilter at space velocity of $220h^{-1}$, the removal efficiency of $NH_3$ at 15, 25, 30 and $35^{\circ}C$ was 80, 90, 95, and 96%, respectively. The removal rate of the ceramic biofilter was 3 to 15 times higher than other biofilters comparing the removal efficiency of $NH_3$ per unit volume of carrier. This result indicates that earthworm casts and porous ceramics are very good inoculum source and carrier, respectively, for the $NH_3$-degrading biofilter.

  • PDF

Recovery of Ammonium Salt from Nitrate-Containing Water by Iron Nanoparticles and Membrane Contactor

  • Hwang, Yu-Hoon;Kim, Do-Gun;Ahn, Yong-Tae;Moon, Chung-Man;Shin, Hang-Sik
    • Environmental Engineering Research
    • /
    • 제17권2호
    • /
    • pp.111-116
    • /
    • 2012
  • This study investigates the complete removal of nitrate and the recovery of valuable ammonium salt by the combination of nanoscale zero-valent iron (NZVI) and a membrane contactor system. The NZVI used for the experiments was prepared by chemical reduction without a stabilizing agent. The main end-product of nitrate reduction by NZVI was ammonia, and the solution pH was stably maintained around 10.5. Effective removal of ammonia was possible with the polytetrafluoroethylene membrane contactor system in all tested conditions. Among the various operation parameters including influent pH, concentration, temperature, and contact time, contact time and solution pH showed significant effects on the ammonia removal mechanism. Also, the osmotic distillation phenomena that deteriorate the mass transfer efficiency could be minimized by pre-heating the influent wastewater. The ammonia removal rate could be maximized by optimizing operation conditions and changing the membrane configuration. The combination of NZVI and the membrane contactor system could be a solution for nitrate removal and the recovery of valuable products.

활성탄 물성에 따른 암모니아성 질소 흡착의 동력학적 연구 (A Kinetic Study on the Ammonia Nitrogen Adsorption by Physical Characteristics of Activated Carbon)

  • 서정범;강준원;이익수
    • 한국물환경학회지
    • /
    • 제24권3호
    • /
    • pp.311-316
    • /
    • 2008
  • This study aimed to obtain equilibrium concentration on adsorption removal of ammonia nitrogen by activated carbon, to express the adsorption characteristics following Freundlich isotherm and also, based on the value obtained, to investigate the relationship between physical characteristics of activated carbon and dynamics of ammonia nitrogen removal by obtaining rate constant and effective pore diffusivity. The results summarized from this study are as follows. It was noted that powdered activated carbon showed better adsorption ability than granular activated carbon. The value of constant (f) of Freundlich isotherm of powered activated carbon was $4.6{\times}10^{-8}$ which is bigger than that of granular activated carbon. The adsorption rate constant on ammonia nitrogen of powered activated carbon with high porosity and low effective diameter was highest as 0.416 hr-1 and the effective pore diffusivity ($D_e$) was lowest as $1.17{\times}10^{-6}cm^2/hr$, and the value of ammonia nitrogen adsorption rate constant of granular activated carbon was $0.149{\sim}0.195hr^{-1}$. It was revealed that, with the same amount of dosage, the adsorptive power of activated carbon with lower effective diameter and bigger porosity was better and its rate constant was also high. With a little adsorbent dosage of 2 g, there was no difference removal ability of ammonia nitrogen as change of adsorption properties.

Performance Evaluation of Anaerobic Bioreactors and Effects of Ammonia on Anaerobic Digestion in Treating Swine Wastewaters

  • Lee, Gook-Hee;Seo, Jun-Won;Kim, Jong-Soo
    • 한국환경농학회지
    • /
    • 제25권3호
    • /
    • pp.195-201
    • /
    • 2006
  • The operational characteristics of anaerobic bioreactors in treating swine wastewater were evaluated upto hydraulic retention time (HRT) of 1 day and organic loading rate (OLR) of $5.1kg-COD/m^3{\cdot}d$ for 200 days. The bioreactors were effective in treating swine wastewaters with COD removal efficiency of $78.9{\sim}81.5%$ and biogas generation of $0.39{\sim}0.59m^3/kg-COD_r$ at OLR of $1.1{\sim}2.2kg-COD/m^3{\cdot}d$. The two-stage ASBF anaerobic bioreactors was effective in treating different characteristics of swine wastewaters since they showed high and stable COD removal efficiency at high OLR due to effective retention of biomass by media and staging. The effects of ammonia on anaerobic digestion were investigated by operating two-stage ASBF reactors using swine wastewaters as influent without and with ammonia removal at HRT of $1{\sim}2$ days and OLR of $2.2{\sim}9.6kg-COD/m^3{\cdot}d$ for 250 days. The COD removal efficiency and biogas generation of two-stage ASBF reactors was decreased by increasing influent ammonia concentrations to 1,580 mg (T-N)/L with increasing OLR to $6.3kg-COD/m^3{\cdot}d$, while those were increased by maintaining influent ammonia concentrations below 340 mg (T-N)/L by MAP precipitation with increasing OLR to $9.6kg-COD/m^3{\cdot}d$. Initial inhibition of ammonia on anaerobic processes was observed at a concentration of 760 mg (T-N)/L and the COD removal efficiency and biogas generation dropped to 1/2 at ammonia concentration ranges of $1,540{\sim}1,870mg$ (T-N)/L. It is essential to remove ammonia in swine wastewaters to an initial inhibition level before anaerobic processes for the effective removal of COD.