• Title/Summary/Keyword: Ammonia emissions

Search Result 142, Processing Time 0.021 seconds

Study on the Emission Characteristics of Air Pollutants from Agricultural Area (농업지역(밭) 암모니아 등 대기오염물질 계절별 모니터링 연구)

  • Kim, Min-Wook;Kim, Jin-Ho;Kim, Kyeong-Sik;Hong, Sung-Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.3
    • /
    • pp.211-218
    • /
    • 2021
  • BACKGROUND: Fine particulate matter (PM2.5) is produced by chemical reactions between various precursors. PM2.5 has been found to create greater human risk than particulate matter (PM10), with diameters that are generally 10 micrometers and smaller. Ammonia (NH3) and nitrogen oxides (NOx) are the sources of secondary generation of PM2.5. These substances generate PM2.5 through some chemical reactions in the atmosphere. Through chemical reactions in the atmosphere, NH3 generates PM2.5. It is the causative agent of PM2.5. In 2017 the annual ammonia emission recorded from the agricultural sector was 244,335 tons, which accounted for about 79.3% of the total ammonia emission in Korea in that year. To address this issue, the agricultural sector announced the inclusion of reducing fine particulate matter and ammonia emissions by 30% in its targets for the year 2022. This may be achieved through analyses of its emission characteristics by monitoring the PM2.5 and NH3. METHODS AND RESULTS: In this study, the PM2.5 concentration was measured real-time (every 1 hour) by using beta radiation from the particle dust measuring device (Spirant BAM). NH3 concentration was analyzed real-time by Cavity Ring-Down Spectroscopy (CRDS). The concentrations of ozone (O3) and nitrogen dioxide (NO2) were continuously measured and analyzed for the masses collected on filter papers by ultraviolet photometry and chemiluminescence. CONCLUSION: This study established air pollutant monitoring system in agricultural areas to analyze the NH3 emission characteristics. The amount of PM2.5 and NH3 emission in agriculture was measured. Scientific evidence in agricultural areas was obtained by identifying the emission concentration and characteristics per season (monthly) and per hour.

Effect of Aeration Rates on Ammonia Emissions during Composting of Livestock Manure (축분(畜糞) 퇴비화시(堆肥化時) 공기주입율(空氣注入率)이 암모니아 배출(排出)에 미치는 영향(影響))

  • Kang, Hong-Won;Rhee, In-Koo;Park, Hyang-Mee;Ko, Jee-Yeon;Choi, Jyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.3
    • /
    • pp.304-311
    • /
    • 1999
  • This experiment was conducted to find out the optimum condition of aeration rates for removal of malodor and to improve the compost quality. The aspect of ammonia emission and amounts of volatilization were investigated in the enclosed composting reactor of 242 liters piled with mixed materials of dairy manure and rice straw, which adjusted to 65% of initial moisture content and controlled by four different aeration rates. Mature temperature increased suddenly in initial composting time and decreased with Increasing aeration rates. The treatment of $1.79l\;min^{-1}kg\;dry-solids^{-1}$ results in overcooling and rapid drying of composting materials because of too much aeration. The average concentration of ammonia emitted from composting for 24 days was the range of 25.3 to $239.8mg\;l^{-1}$ and was highest in the treatment of $0.09l\;min^{-1}kg\;dry-solids^{-1}$, followed by 0.90. 0.18 and $1.79l\;min^{-1}kg\;dry-solids^{-1}$. The range of maximum concentration by different aeration rates was $335{\sim}2279mg\;l^{-1}$ and it wan highest in the treatment of $0.09l\;min^{-1}kg\;dry-solids^{-1}$, followed by 0.18, 0.09 and $1.79l\;min^{-1}kg\;dry-solids^{-1}$. Relationship between the ammonia concentration emitted and temperature matured under different aeration rates showed an exponential positive correlation with 1% significance and had a trend of clear increase in ammonia concentration with increasing temperature over $50^{\circ}C$. Most of ammonia volatilized within plays after composting. The volatilization rate of ammonia ranged from 0.056 to 0.453 per dry solids of materials and it was highest in the treatment of $0.09l\;min^{-1}kg\;dry-solids^{-1}$, followed by 0.18, 0.09 and $1.79l\;min^{-1}kg\;dry-solids^{-1}$. Amounts of ammonia volatilized under composting condition of this experiment was estimated to be highest in the aeration range of 0.9 to $1.0l\;min^{-1}kg\;dry-solids^{-1}$.

  • PDF

Nutrient Recycling : The European Experience - Review -

  • Hall, J.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.4
    • /
    • pp.667-674
    • /
    • 1999
  • Intensive livestock production has increased dramatically in Europe since the 1960s, particularly. in Northern and Central European countries, resulting in large increases in the nutrient pollution of surface and ground waters and in atmospheric emissions of ammonia. This has arisen due to inadequate management of the large amounts manure produced, particularly where there has been insufficient land area used for efficient nutrient reuse in crop production. Nutrient pollution from intensive livestock production has progressively degraded the quality of water resources in many parts of Europe, with eutrophication of many inland and coastal waters, as well as soil acidification and ecosystem degradation. These problems have been known for many years, and although there are various international agreements on transboundary pollution, it is largely left to individual countries to set and enforce standards. Consequently, a number of different approaches are employed, although the common feature of these is to encourage farmers to use the nutrients in animal manures efficiently according to crop requirements, which also reduces the potential for accumulation in soil and subsequent loss to the environment. This paper reviews nutrient production and use in Europe and some of the strategies employed to avoid and reduce nutrient pollution.

Measurement of odor compounds from odorous emissions source of Industrial Complex (산업단지에서 배출되는 악취원인물질의 규명)

  • An Sang-Young;Choi Sung-Woo
    • Journal of Environmental Science International
    • /
    • v.14 no.1
    • /
    • pp.81-89
    • /
    • 2005
  • As a typical example of simultaneous analysis of the odorous compounds, the volatile organic compounds from inventory sources in Seongseo industrial area were concentrated and analyzed with thermal desorber/GC/MSD, and major malodorous compounds were estimated. Odor intensity and odor concentration was analyzed simultaneously During a period from November in 2002 to December in 2003, this study was conducted to evaluate malodor emission characterization in major treatment facilities. The major components were Dimethyl sulfide, Dimethyl disulfide, Methyl mercaptane, Ammonia, Benzene, Toluene, m,p-xylene, o-xylene, Styrene, 1,2,4­T.M.B and 1,3,5-T.M.B. Among the six major inventory sources, the odor unit concentration of Night-soil disposal facilities was the highest, $669\~2344\;ou/m^{3}.$

Characteristics of Flue Gas Using Direct Combustion of VOC and Ammonia (휘발성 유기 화합물 및 암모니아 직접 연소를 통한 배기가스 특성)

  • Kim, JongSu;Choi, SeukCheun;Jeong, SooHwa;Mock, ChinSung;Kim, DooBoem
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.131-137
    • /
    • 2022
  • The semiconductor process currently emits various by-products and unused gases. Emissions containing pollutants are generally classified into categories such as organic, acid, alkali, thermal, and cabinet exhaust. They are discharged after treatment in an atmospheric prevention facility suitable for each exhaust type. The main components of organic exhaust are volatile organic compounds (VOC), which is a generic term for oxygen-containing hydrocarbons, sulfur-containing hydrocarbons, and volatile hydrocarbons, while the main components of alkali exhaust include ammonia and tetramethylammonium hydroxide. The purpose of this study was to determine the combustion characteristics and analyze the NOX reduction rate by maintaining a direct combustion and temperature to process organic and alkaline exhaust gases simultaneously. Acetone, isopropyl alcohol (IPA), and propylene glycol methyl ether acetate (PGMEA) were used as VOCs and ammonia was used as an alkali exhaust material. Independent and VOC-ammonia mixture combustion tests were conducted for each material. The combustion tests for the VOCs confirmed that complete combustion occurred at an equivalence ratio of 1.4. In the ammonia combustion test, the NOX concentration decreased at a lower equivalence ratio. In the co-combustion of VOC and ammonia, NO was dominant in the NOX emission while NO2 was detected at approximately 10 ppm. Overall, the concentration of nitrogen oxide decreased due to the activation of the oxidation reaction as the reaction temperature increased. On the other hand, the concentration of carbon dioxide increased. Flameless combustion with an electric heat source achieved successful combustion of VOC and ammonia. This technology is expected to have advantages in cost and compactness compared to existing organic and alkaline treatment systems applied separately.

Antibacterial Activity of Lactobacillus sakei on Microorganisms isolated from Chicken Manure (계분 유래 미생물에 대한 Lactobacillus sakei 의 항균활성)

  • Park, Min-Ki;Jeong, Jong-Seong;Kim, Woan-Sub
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.25-31
    • /
    • 2017
  • This study was conducted to find means to reduce the foul smell emitted from chicken manure. Rice water was inoculated with Lactobacillus sakei and then examined to determine the bacterial survival rates during storage, and whether fermentation had occurred. Rice water was an excellent medium for the growth of L sakei, given that a viable cell count was maintained for 15 days during storage at $4^{\circ}C$ and decreased slightly thereafter. Furthermore, microorganisms in chicken manure were separated and 14 species were identified. The antibacterial activity of an L. sakei supernatant against the identified microorganisms was measured using the agar diffusion method. The growth of 11 out of 14 species was inhibited, and only Corynebacterium variabile, Enterococcus faecium, and Raoultella ornithinolytica survived. Rice water was fermented by inoculation with L. sakei and mixed with chicken manure, and the quantities of ammonia, ethyl mercaptan, and hydrogen sulfide were measured after 48 hours. Emissions of ammonia and ethyl mercaptan were reduced significantly.

Comparative Analysis of Offensive Odorants in Urine Samples in Relation to Sample Treatment Conditions (Urine 시료 중 지정악취성분에 대한 분석연구: 시료의 보관방법과 채취조건의 연계성 연구)

  • Lee, Min-Hee;Kim, Yong-Hyun;Jo, Sang-Hee;Choi, Si-On;Sa, Inyoung;Kim, Ki-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.5
    • /
    • pp.492-503
    • /
    • 2014
  • In this study, emission characteristics of volatile odorant species released from urine samples were investigated in relation to two key variables: [1] storage conditions before sampling and [2] incubation conditions during sampling. To this end, 20 offensive odorants were quantified by four different analytical systems and then sorted according to seven functional groups. It is indicated that benzene (B), styrene (S), isobutyl alcohol (i-BuAl), butyl acetate (BuAc), butyraldehyde (BA), isovaleraldehyde (IA), and valeraldehyde (VA) did not contribute to urine odor because their concentration levels were measured below detection limits in all samples. On the other hand, emission concentrations of toluene (T), methyl ethyl ketone (MEK), methyl mercaptan ($CH_3SH$), carbon disulfide ($CS_2$), and ammonia ($NH_3$) were generally higher than other compounds. In terms of odor intensity (OI), $CH_3SH$ and $NH_3$ showed the largest OI values in the range of 2~4. According to t-test (storage approach and urine temperature), the results of T, $CS_2$, and $NH_3$ were statistically distinguished from each other in terms of differences in sampling temperature. Likewise, the emissions of certain odorants from urine samples were affected by changes in sample treatment conditions to a degree.

Selective Catalytic Oxidation of Ammonia over Noble Catalysts Supported on Acidic Fe-ZSM5 Supports (산성 Fe-ZSM5 담체에 담지된 귀금속 촉매를 활용한 암모니아의 선택적 산화반응)

  • Kim, Min-Sung;Lee, Dae-Won;Lee, Kwan-Young
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.89-94
    • /
    • 2012
  • In this study, we investigated the activity of Pd and Pt supported on acidic Fe-ZSM5 supports for selective catalytic oxidation of ammonia ($NH_3$-SCO). Among the catalysts, Pt/Fe-ZSM5 catalyst exhibited superior $NH_3$-SCO activity to Pd/Fe-ZSM5 catalyst. We also tested Pt/Fe-ZSM5 catalysts with different Fe loading using ion-exchange method to prepare Fe-ZSM5 supports, which resulted in the increased catalytic performance with smaller Fe content: $NH_3$ was oxidized completely at low temperature ($250^{\circ}C$). The physicochemical properties of Fe-ZSM5 were investigated to figure out the relationship between the characteristics of the catalysts and the catalytic activity on $NH_3$-SCO by Inductively coupled plasma-atomic emissions spectrometer (ICP-AES), $N_2$ sorption, X-ray diffraction (XRD), temperature programmed desorption of $NH_3$ ($NH_3$-TPD) technique.

Phylogenetic placement of thermophilic ammonium-tolerant bacteria and their distribution in various composts

  • Kazutaka Kuroda
    • Animal Bioscience
    • /
    • v.36 no.4
    • /
    • pp.671-678
    • /
    • 2023
  • Objective: Previous studies isolated the thermophilic ammonium-tolerant (TAT) bacterium Bacillus sp. TAT105 that grew in composting swine manure with the assimilation of ammonium nitrogen and reduced ammonia emissions during composting. Those studies also investigated the potential for applications of TAT105 to composting. It was observed that the concentration of TAT bacteria, phylogenetically close to TAT105, increased during composting. The objectives of this study were to identify the phylogenetic placement of these TAT bacteria and investigate their distribution in various composts. Methods: The phylogenetic placement of TAT105 was examined based on the sequence of 16S ribosomal RNA gene. The genomic DNA homology between TAT105 and the type strains of bacterial species that were phylogenetically close to TAT105 were examined by DNA-DNA hybridization. Moreover, the tolerances of these strains to NH4Cl and NaCl were analyzed using a cultivation method. Concentrations of TAT bacteria in various composts were evaluated using an agar medium specific to TAT bacteria and polymerase chain reaction followed by restriction fragment length polymorphism analysis. Results: TAT105 was most closely related to Bacillus thermolactis and Bacillus kokeshiiformis. Many variants of these species have been detected in various environments, including composts. The type strains of these species displayed TAT characteristics that were similar to those of TAT105. Among the composts examined in this study, TAT bacteria were detected at high concentrations (105 to 109 colony forming units per gram of dry matter) in most of the composts made from cattle manure, swine manure, bark, and excess sludge. Conclusion: TAT bacteria comprised B. thermolactis, B. kokeshiiformis, and their phylogenetically close relatives. They were considered to be adaptable to composting of some certain materials, and a favorable target for searching for strains with some useful function that could be applied to composting of these materials.

A Study for the Application of Ammonia Propulsion Model: Focusing on the Training Ship (암모니아 추진 모델 적용을 위한 연구: 실습선을 중심으로)

  • GA-YOUNG YANG;JAE-WOO AHN;SUNG-BIN HONG;KANG-HYEON KIM;JAE-MIN PARK;BO RIM RYU;HO KEUN KANG
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.156-157
    • /
    • 2022
  • Currently, due to the increase in GHG emissions, the global weather phenomenon is constantly occurring, and each international organization is trying to reduce 온실가스 through various regulations to reduce GHG. To comply with the regulations, eco-friendly ships are currently being studied to reduce GHG. This paper models the fuel propulsion system of NH3 sofc fuel cell propulsion ship through the case study of eco-friendly ships, especially NH3 fuel cells, and provides information on how NH3 sofc fuel cell propulsion ships can benefit energy efficiency and decarbonization compared to existing FO vessels.

  • PDF