• Title/Summary/Keyword: Ammonia Water

Search Result 953, Processing Time 0.027 seconds

Performance Evaluation of Biofilter Treating Autothermal Thermophilic Aerobic Digestion Offgas (고온호기성 소화공정 배가스 처리를 위한 바이오필터 성능평가)

  • Bae, Byung-Uk;Choi, Ki-Seung
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.732-739
    • /
    • 2010
  • Two combined autothermal thermophilic aerobic digestion (ATAD) and biofilter (BF) systems were operated to treat the piggery wastewater and the ammonia offgas. Experimental results indicated that the organic removal efficiency of ATAD-2, operated with oxygen, was higher than that of ATAD-1, operated with air. The concentration of ammonia in ATAD-2 offgas was higher compared to ATAD-1 offgas, but the total amount of ammonia produced from ATAD-2 was less than that from ATAD-1 due to the lower oxygen flowrate. The ammonia gas produced from both ATAD reactors was successfully removed by the BF. The BF-1, connected with ATAD-1, removed 93% of ammonia at the loading rate of $9.4g\;NH_3-N/m^3/hr$. The BF-2, connected with ATAD-2, removed 95% of ammonia gas at the loading rate of $8.1g\;NH_3-N/m^3/hr$. As the nitrification process continued, pH value of recirculating solution continuously decreased due to the accumulation of nitrate. When the ammonia loading rate was less than $22.7g\;NH_3-N/m^3/h$, the proper replacing cycle of recirculating solution was in the range of 10 to 11 days. Almost 90% of total mass of nitrogen fed into the each BF was confirmed from the mass balance on nitrogen.

Comparison of Adsorption Performance of Ammonia and Formaldehyde Gas Using Adsorbents Prepared from Water Treatment Sludge and Impregnated Activated Carbon (정수슬러지 유래 흡착제와 첨착활성탄의 암모니아 및 포름알데히드 기체 흡착 성능 비교)

  • Lee, Choul Ho;Park, Nayoung;Kim, Goun;Jeon, Jong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.62-67
    • /
    • 2016
  • In this study, a pellet-type adsorbent was prepared by using the water-treatment sludge as a raw material, and its physical and chemical properties were analyzed through $N_2$-adsorption, XRD, XRF, and $NH_3$-TPD measurements. Adsorption performance for gaseous ammonia and formaldehyde was compared between the pellet-type adsorbents prepared from water-treatment sludge and the impregnated activated carbon. Although the surface area and pore volume of the pellet-type adsorbent produced from water-treatment sludge were much smaller than those of the impregnated activated carbon, the pellet-type adsorbent produced from water-treatment sludge could adsorb ammonia gas even more than that of using the impregnated activated carbon. The pellet-type adsorbent prepared from water-treatment sludge showed a superior adsorption capacity for ammonia which can be explained by chemical adsorption ascribed to the higher amount of acid sites on the pellet-type adsorbent prepared from water-treatment sludge. In the case of formaldehyde adsorption, the impregnated activated carbon was far superior to the adsorbent made from the water-treatment sludge, which can be attributed to the increased surface area of the impregnated activated carbon.

Effect of Precipitation on Operation Range of the CO2 Capture Process using Ammonia Water Absorbent (암모니아수 흡수제를 이용한 이산화탄소 제거 공정에서 침전생성이 조업영역에 미치는 영향)

  • You, Jong Kyun;Park, Ho Seok;Hong, Won Hi;Park, Jongkee;Kim, Jong-Nam
    • Korean Chemical Engineering Research
    • /
    • v.45 no.3
    • /
    • pp.258-263
    • /
    • 2007
  • Ammonia water was investigated as a new absorbent of the chemical absorption process for the removal of $CO_2$ in flue gas. The suitable range of ammonia water concentration and $CO_2$ loading ($mol\;CO_2/mol\;NH_3$) were decided in the point of view of $CO_2$ absorption capacity and $NH_4HCO_3$ precipitation. The absorption capacity of $CO_2$ and the precipitation of $NH_4HCO_3$ in liquid phase were calculated by the Pitzer model for electrolyte solution. The $CO_2$ absorption capacity of the ammonia water over $5\;molNH_3/kgH_2O$ was higher than that of conventional amine absorbent. The $CO_2$ loadings where precipitation occurred were decided at various absorbent concentrations. Theses values were higher than 0.5 in the concentration range of $5-14\;molNH_3/kgH_2O$ at 293, 313 K. The absorber for the removal of $CO_2$ in flue gas could be operated without $NH_4HCO_3$ precipitation by using high concentration of ammonia water below these $CO_2$ loading values. The optimum temperature of the ammonia water absorbent for removal of $CO_2$ in flue gas was 297-312 K depending on the concentration of ammonia water.

Determination of Ammonia-N in Environmental Water by Air-segmented FIA

  • Feng, Yong-Lai;Tian, Li-Ching;Wang, Wei;Wu, Qiao-Znen
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.787-792
    • /
    • 1995
  • A method for determination of ammonia-N in environmental water by air-segmented flow injection analysis using the colour reaction of phenol and sodium hypochlorite with ammonia was described in this paper. When the reaction temperature is $70^{\circ}C$ and the reaction residence time is 5 minutes, a sample frequency of $60-90h^{-1}$ can be achieved. The detection limit and relative deviation are $0.05mg.ml^{-1}$ and 4%, respectively. The recovery of this method is 96 - 110%, and the determination results of the method are greatly agreement with standard colorimetric method.

  • PDF

A Numerical Simulation of Air-Cooled Ammonia/Water GAX Absorption Cooling Cycle (공냉형 암모니아/물 GAX 흡수식 냉동 사이클의 수치 해석)

  • Jeong, S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.488-500
    • /
    • 1995
  • An air-cooled ammonia/water GAX(Generator-Absorber heat eXchange) absorption cooling cycle is proposed and its performance is numerically evaluated. It is shown that the performance of the system is greatly dependent on the quality of the refrigerant leaving the evaporator. For any refrigerant concentration in the investigated range(99.1~99.9% ammonia), the cycle COP(coefficient of performance) reaches the highest value, when some amount(about 7%) of refrigerant evaporates in the refrigerant heat exchanger. Among temperature differences in various heat exchangers, the temperature difference between GAX-absorber and the GAX-generator shows the greatest effect on the system performance, whereas pressure losses cause no significant decrease in COP. The system COP increases almost linearly with increasing evaporator temperature, decreasing absorber temperature or decreasing condenser temperature. If both absorber and condenser temperature increase simultaneously, the decrease in the COP becomes larger.

  • PDF

Mass transfer in adiabatic rectifier of ammonia-water absorption system (암모니아-물 흡수식 시스템에서 단열정류기의 물질 전달)

  • 김병주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.414-421
    • /
    • 1999
  • Falling film rectification involves simultaneous heat and mass transfer between vapor and liquid interface. In the present work, the adiabatic rectification process of ammonia-water vapor on the vertical plate was investigated. The continuity, momentum, energy and diffusion equations for the solution film and vapor mixture were formulated in integral forms and solved numerically. The model could predict the film thickness, the pressure gradient, and the mass transfer rate. The effects of Reynolds number and ammonia concentration of solution and vapor mixture, rectifier length, and the enhancement of mass transfer in each phases were investigated. The stripping of water in vapor mixture occurred new the entrance of ammonia solution, which imposed the proper size of an adiabatic rectifier. Rectifier efficiency increased as film Reynolds number increased and as vapor mixture Reynolds number decreased. The improvement of rectifier efficiency was significant with the enhancement of mass transfer in falling film.

  • PDF

Mass Transfer in an Adiabatic Rectifier of Ammonia-Water Absorption System

  • Kim, Byong-Joo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.2
    • /
    • pp.69-79
    • /
    • 2000
  • Falling film rectification involves simultaneous heat and mass transfer between vapor and solution film. In the present work, the adiabatic rectification process of ammonia-water vapor by the falling solution film on the vertical plate was investigated. The continuity momentum, energy and diffusion equations for the solution film and the vapor mixture were formulated in integral forms and solved numerically, The model could predict the film thickness, the pressure gradient, and the mass transfer rate. The effects of Reynolds number and ammonia concentration of solution and vapor mixture, rectifier length, and the enhancement of mass transfer coefficient in each phases were investigated. The stripping of water in vapor mixture occurred near the entrance of ammonia solution, which imposed the proper size of an adiabatic rectifier. Rectifier efficiency increased as film Reynolds number increased and as vapor mixture Reynolds number decreased. The improvement of rectifier efficiency was significant with the enhancement of mass transfer coefficient in falling film.

  • PDF

Comparative Thermodynamic Analysis of Organic Rankine Cycle and Ammonia-Water Rankine Cycle (유기랭킨사이클과 암모니아-물 랭킨사이클의 열역학적 성능의 비교 해석)

  • KIM, KYOUNG HOON;KIM, MAN-HOE
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.5
    • /
    • pp.597-603
    • /
    • 2016
  • In this paper a comparative thermodynamics analysis is carried out for organic Rankine cycle (ORC) and ammonia-water Rankine cycle (AWRC) utilizing low-grade heat sources. Effects of the working fluid, ammonia concentration, and turbine inlet pressure are systematically investigated on the system performance such as mass flow rate, pressure ratio, turbine-exit volume flow, and net power production as well as the thermal efficiency. Results show that ORC with a proper working fluid shows higher thermal efficiency than AWRC, however, AWRC shows lower mass flow rate of working fluid and lower pressure ratio of expander than ORC.

A Study on the Tension and Slack Mercerization of Cotton Fabrics (견직물의 긴장과 무긴장머어서화 가공에 관한 연구)

  • Chul-Ho, Choi;Chan-Min, Lee
    • Textile Coloration and Finishing
    • /
    • v.2 no.3
    • /
    • pp.51-58
    • /
    • 1990
  • Cotton fabrics were mercerized in ammonia water, sodium hydroxide and mixture of ammonia/sodium hydroxide, slack and under tension. X-ray and infrared spectra analyses were used to measure crystallinity of treated cottons. Changes due to swelling, which took place in the accessible regions were determined by moisture regain and dye adsorption. In addition to that crease recovery was compared mutually, and breaking strength-elongation compared, too. Both ammonia water and caustic treatments produced changes in morphology (swollen fibers, decrease in convolutions) and in fine structure of the cellulose (increase accessibility as measured by increased moisture regain, dye adsorption). X-ray diffraction showed partial recrystallization into cellulose III lattic after tension treatment with ammonia water. Both reagents produced increased cotton elongation-at-break with slack mercerization, increased cotton breaking strength with tension mercerization, and increased moisture regain or dye adsorption with slack mercerization.

  • PDF

Vertical Diffusion of Ammonia Into Amorphous Ice Sturcture

  • Kim, Yeong-Sun;Mun, Ui-Seong;Gang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.280-280
    • /
    • 2012
  • We examined ammonia diffusion on the surface of amorphous ice film through the measurement of decreasing residual quantity of $NH_3$ molecules compared to $H_2O$. The populations of $NH_3$ molecules on the surface of amorphous ice were monitored by using the techniques of temperature programmed reactive ion scattering (TPRIS) method. The ratio of intensity between ammonia and water was examined as a function of time at controlled temperature. When ammonia molecules were externally added onto an ice film at a temperature of 80 K, ammonia coverage with regard to ice was 0.12-0.16 ML. The intensity of ammonia molecules on the surface of ice decreased as time increased and the extent of decreased intensity of ammonia increased as controlled temperature increased. Moreover, energy barrier was estimated to be $51kJmol^{-1}$ on amorphous ice film. The results of the experiment indicate that ammonia molecules have a property of vertical diffusion into amorphous ice and the energy barrier of ammonia diffusion into bulk of ice is higher than that of hydrogen bonding.

  • PDF